126 research outputs found

    Processing and Characterization of Precision Microparts from Nickel-based Materials

    Get PDF
    The objective of this research was to study the influence of electroplating parameters on electrodeposit characteristics for the production of nickel (Ni) and nickel-iron (Ni-Fe) microparts by photoelectroforming. The research focused on the most relevant parameter for industry, which is the current density, because it determines the process time and the consumed energy. The results of the Ni and Ni-Fe characterisations can be divided into two aspects closely linked with each other ; the morphology and the hardness

    Comparison Between SMMR and SSM/I Passive Microwave Data Collected Over the Antarctic Ice Sheet

    Get PDF
    Passive microwave brightness temperature data collected during the overlap period betwen the Scanning Multichannel Microwave Radiometer and the Special Sensor Microwave Imager are compared. Only data collected over the Antarctic Ice Sheet are used in order to limit spatial and temporal complications associated with the open ocean and sea ice. Linear regressions are computed from scatter plots of complementary pairs of channels from each sensor revealing hightly correlated data sets. That a simple linear model can be used to correlate the data is used to support the argument that there are important relative calibration differences between the two instruments

    Concepts of health and well-being in managers: An organizational study

    Get PDF
    Global changes and new managerial challenges require new concepts of health and well-being in organizational contexts. In the South African context, health and well-being of managers have gained relevance in organizations and in management sciences. International organizations, in particular, attempt to address the increasing demand for health care and the delivery of health services to their managers. Careful and appropriate health management requires research to evaluate context-specific health concepts and strategies. The purpose and aim of this article is to assess managerial concepts on health and well-being that could be used by the organization to contribute to managerial well-being by implementing health promotion according to managerial needs. At the same time, this article contributes to salutogenetic health research that is very rare with regard to the South African organizational management research

    Clinical approach for the classification of congenital uterine malformations

    Get PDF
    A more objective, accurate and non-invasive estimation of uterine morphology is nowadays feasible based on the use of modern imaging techniques. The validity of the current classification systems in effective categorization of the female genital malformations has been already challenged. A new clinical approach for the classification of uterine anomalies is proposed. Deviation from normal uterine anatomy is the basic characteristic used in analogy to the American Fertility Society classification. The embryological origin of the anomalies is used as a secondary parameter. Uterine anomalies are classified into the following classes: 0, normal uterus; I, dysmorphic uterus; II, septate uterus (absorption defect); III, dysfused uterus (fusion defect); IV, unilateral formed uterus (formation defect); V, aplastic or dysplastic uterus (formation defect); VI, for still unclassified cases. A subdivision of these main classes to further anatomical varieties with clinical significance is also presented. The new proposal has been designed taking into account the experience gained from the use of the currently available classification systems and intending to be as simple as possible, clear enough and accurate as well as open for further development. This proposal could be used as a starting point for a working group of experts in the field

    The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance

    Get PDF
    It has long been considered that the important biological effects of ionizing radiation are a direct consequence of unrepaired or misrepaired DNA damage occurring in the irradiated cells. It was presumed that no effect would occur in cells in the population that receive no direct radiation exposure. However, in vitro evidence generated over the past two decades has indicated that non-targeted cells in irradiated cell cultures also experience significant biochemical and phenotypic changes that are often similar to those observed in the targeted cells. Further, nontargeted tissues in partial body-irradiated rodents also experienced stressful effects, including oxidative and oncogenic effects. This phenomenon, termed the “bystander response,” has been postulated to impact both the estimation of health risks of exposure to low doses/low fluences of ionizing radiation and the induction of second primary cancers following radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism, gap-junction intercellular communication, and DNA repair, have been proposed to regulate radiation-induced bystander effects. The latter mechanisms are major mediators of the system responses to ionizing radiation exposure, and our knowledge of the biochemical and molecular events involved in these processes is reviewed in this chapter

    Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    Get PDF
    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and other tissues, and this connexin’s role in therapeutic and adverse effects of statins in a range of disease states

    Technological development of high-k dielectric FinFETs for liquid environment

    No full text
    This work presents the technological development and characterization of n-channel fully depleted high-k dielectric FinFETs (Fin Field Effect Transistor) for applications in a liquid environment. Herein, we provide a systematic approach based on Finite Element Analysis for a high-control fabrication process of vertical Si-fins on bulk and we provide many useful fabrication expedients. Metal gate FinFETs have been successfully electrically characterized, showing excellent subthreshold slope SS = 72 mV/dec and high Ion/Ioff

    Finfet with fully PH-responsive HFO<inf>2</inf> as highly stable biochemical sensor

    No full text
    In this work, highly scaled FinFETs (Fin Field Effect Transistors) are proposed as both sensing and circuit units of a lab-on-a-chip platform. The FinFET-based sensors with an HfO2 gate oxide demonstrate full pH-response with ΔVth ≈ 56 mV/pH. High readout sensitivity Sout = ΔId/Id ≈ 43% is achieved in combination with excellent device electronic properties, i.e. SS = 77 mV/dec and Ion/Ioff =1.5×10^6. High long-term stability is proven over 4.5 days with a drift in time limited at 0.14 mV/h
    corecore