16 research outputs found

    Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean

    Get PDF
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand

    Enhanced monitoring of life in the sea is a critical component of conservation management and sustainable economic growth

    Get PDF
    Marine biodiversity is a fundamental characteristic of our planet that depends on and influences climate, water quality, and many ocean state variables. It is also at the core of ecosystem services that can make or break economic development in any region. Our purpose is to highlight the need for marine biological observations to inform science and conservation management and to support the blue economy. We provide ten recommendations, applicable now, to measure and forecast biological Essential Ocean Variables (EOVs) as part of economic monitoring efforts. The UN Decade of Ocean Science for Sustainable Development (2021–2030) provides a timely opportunity to implement these recommendations to benefit humanity and enable the USD 3 trillion global ocean economy expected by 2030

    Characterizing the natural system : toward sustained, integrated coastal ocean acidification observing networks to facilitate resource management and decision support

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 92-107, doi:10.5670/oceanog.2015.34.Coastal ocean ecosystems have always served human populations—they provide food security, livelihoods, coastal protection, and defense. Ocean acidification is a global threat to these ecosystem services, particularly when other local and regional stressors combine with it to jeopardize coastal health. Monitoring efforts call for a coordinated global approach toward sustained, integrated coastal ocean health observing networks to address the region-specific mix of factors while also adhering to global ocean acidification observing network principles to facilitate comparison among regions for increased utility and understanding. Here, we generalize guidelines for scoping and designing regional coastal ocean acidification observing networks and provide examples of existing efforts. While challenging in the early stages of coordinating the design and prioritizing the implementation of these observing networks, it is essential to actively engage all of the relevant stakeholder groups from the outset, including private industries, public agencies, regulatory bodies, decision makers, and the general public. The long-term sustainability of these critical observing networks will rely on leveraging of resources and the strength of partnerships across the consortium of stakeholders and those implementing coastal ocean health observing networksNational Science Foundation, National Aeronautics and Space Administration, and the National Oceanic and Atmospheric Administratio

    Long-term response of oceans to CO2 removal from the atmosphere

    No full text
    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating global warming and ocean acidification. To assess the extent to which CDR might eliminate the long-term consequences of anthropogenic CO2 emissions in the marine environment, we simulate the effect of two massive CDR interventions with CO2 extraction rates of 5 GtC yr(-1) and 25 GtC yr(-1), respectively, while CO2 emissions follow the extended RCP8.5 pathway. We falsify two hypotheses: the first being that CDR can restore pre-industrial conditions in the ocean by reducing the atmospheric CO2 concentration back to its pre-industrial level, and the second being that high CO2 emissions rates (RCP8.5) followed by CDR have long-term oceanic consequences that are similar to those of low emissions rates (RCP2.6). Focusing on pH, temperature and dissolved oxygen, we find that even after several centuries of CDR deployment, past CO2 emissions would leave a substantial legacy in the marine environment

    A coastal coccolithophore maintains pH homeostasis and switches carbon sources in response to ocean acidification

    No full text
    WOS:000439301700001International audienceOcean acidification will potentially inhibit calcification by marine organisms; however, the response of the most prolific ocean calcifiers, coccolithophores, to this perturbation remains under characterized. Here we report novel chemical constraints on the response of the widespread coccolithophore species Ochrosphaera neapolitana (O. neapolitana) to changing-CO2 conditions. We cultured this algae under three pCO(2)-controlled seawater pH conditions (8.05, 8.22, and 8.33). Boron isotopes within the algae's extracellular calcite plates show that this species maintains a constant pH at the calcification site, regardless of CO2-induced changes in pH of the surrounding seawater. Carbon and oxygen isotopes in the algae's calcite plates and carbon isotopes in the algae's organic matter suggest that O. neapolitana utilize carbon from a single internal dissolved inorganic carbon (DIC) pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3- enters the internal DIC pool under acidified conditions. These two observations may explain how O. neapolitana continues calcifying and photosynthesizing at a constant rate under different atmospheric-pCO(2) conditions
    corecore