20 research outputs found

    Community outbreaks of group A Streptococcus revealed by genome sequencing

    Get PDF
    The frequent occurrence of disease outbreaks in humans caused by group A Streptococcus (GAS) is an on-going public health threat. Conventional bacterial typing methods lack the discriminatory power to confidently confirm or refute outbreaks in hospital and community settings. Microbial whole genome sequencing (WGS) provides a potential solution to this, but, there has been limited population-based surveillance with accompanying sequence data. We performed retrospective genomic surveillance of 93 clinical GAS isolates from individuals in a defined geographic region. Detailed clinical information was obtained for closely related clusters of isolates. Genomic sequence data was contextualised through comparison with international data. We identified 18 different emm genotypes within our bacterial population, and revealed both highly diverse and closely related isolates. This high level of diversity was maintained even in the context of international sequence data. We also identified two emm1 clusters, and one emm3 cluster, of closely-related isolates that differed only by 1 to 4 single nucleotide polymorphisms. Analysis of clinical information identified no healthcare associated contact between patients, indicating cryptic community transmission. Our findings suggest that genomic surveillance of GAS would increase detection of transmission and highlight opportunities for intervention

    Sequence-dependent structure/function relationships of catalytic peptide-enabled gold nanoparticles generated under ambient synthetic conditions

    Get PDF
    YesPeptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancemenAir Force Office for Scientific Research (Grant #FA9550-12-1-0226, RRN; AFOSR LRIR) and DOE-BES grant DE-SC0006877, fellowship support from the National Research Council Research Associateshi

    Peptide-directed PdAu nanoscale surface segregation: Toward controlled bimetallic architecture for catalytic materials

    Get PDF
    YesBimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches.Air Force Office for Scientific Research (T.R.W., Grant No. FA9550-12-620 1-0226). S.P.E. and E.B.C. gratefully acknowledge financial support from the Army Research Office through a MURI award, W911NF-10-1-052

    Interfacial alloying between lead halide perovskite crystals and hybrid glasses

    Get PDF
    The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion “alloying” layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices
    corecore