113 research outputs found

    Trash removal methods for improved mechanical emptying of pit latrines using a screw auger

    Get PDF
    Trash in pit latrines is one of the largest challenges facing pit emptying technologies, including the powered auger (the Excrevator), developed for improved emptying in lower- and lower-middle income countries. This study focused on two trash removal methods in conjunction with pit emptying by the Excrevator: (1) simultaneous removal of trash with sludge and (2) manual trash removal prior to sludge removal. Simultaneous removal was tested by adding to the inlet of the Excrevator system two cutting heads designed to reduce the size of trash particles before entering the pipe and auger. Laboratory testing indicated that the auger will not provide the rotational speeds necessary for proper maceration of fibrous materials such as clothing, indicating that a separate maceration unit with higher rotational methods may be more appropriate. Four manual trash removal mechanisms were designed to improve on existing manual trash ‘fishing’ tools such as iron rods with fixed hooks. Two of these tools (the ‘claw’ and the ‘hook’) showed promising laboratory results and were subsequently field tested in Mzuzu, Malawi. Both tools proved more efficient than the current tools used in the field and have potential for use in Malawi

    Long-Acting Injectable Antiretroviral Therapy: An Opportunity to Improve Human Immunodeficiency Virus (HIV) Treatment and Reduce HIV Transmission among Persons Being Released from Prison Facilities

    Get PDF
    To the Editor—Antiretroviral therapy (ART) has decreased human immunodeficiency virus (HIV) morbidity and mortality. However, efficacy is dependent upon adherence, which is influenced by behavioral, social, and structural factors. Among these, incarceration can negatively impact ART adherence

    Time to change the way we think about tuberculosis infection prevention and control in health facilities: insights from recent research

    Get PDF
    In clinical settings where airborne pathogens, such as Mycobacterium tuberculosis, are prevalent, they constitute an important threat to health workers and people accessing healthcare. We report key insights from a 3-year project conducted in primary healthcare clinics in South Africa, alongside other recent tuberculosis infection prevention and control (TB-IPC) research. We discuss the fragmentation of TB-IPC policies and budgets; the characteristics of individuals attending clinics with prevalent pulmonary tuberculosis; clinic congestion and patient flow; clinic design and natural ventilation; and the facility-level determinants of the implementation (or not) of TB-IPC interventions. We present modeling studies that describe the contribution of M. tuberculosis transmission in clinics to the community tuberculosis burden and economic evaluations showing that TB-IPC interventions are highly cost-effective. We argue for a set of changes to TB-IPC, including better coordination of policymaking, clinic decongestion, changes to clinic design and building regulations, and budgeting for enablers to sustain implementation of TB-IPC interventions. Additional research is needed to find the most effective means of improving the implementation of TB-IPC interventions; to develop approaches to screening for prevalent pulmonary tuberculosis that do not rely on symptoms; and to identify groups of patients that can be seen in clinic less frequently

    Bar Evolution Over the Last Eight Billion Years: A Constant Fraction of Strong Bars in GEMS

    Full text link
    One third of present-day spirals host optically visible strong bars that drive their dynamical evolution. However, the fundamental question of how bars evolve over cosmological times has yet to be addressed, and even the frequency of bars at intermediate redshifts remains controversial. We investigate the frequency of bars out to z~1.0 drawing on a sample of 1590 galaxies from the GEMS survey, which provides morphologies from HST ACS two-color images, and highly accurate redshifts from the COMBO-17 survey. We identify spiral galaxies using the Sersic index, concentration parameter, and rest-frame color. We characterize bars and disks by fitting ellipses to F606W and F850LP images, taking advantage of the two bands to minimize bandpass shifting. We exclude highly inclined (i>60 deg) galaxies to ensure reliable morphological classifications, and apply completeness cuts of M_v <= -19.3 and -20.6. More than 40% of the bars that we detect have semi major axes a<0.5" and would be easily missed in earlier surveys without the small PSF of ACS. The bars that we can reliably detect are fairly strong (with ellipticities e>=0.4) and have a in the range ~1.2-13 kpc. We find that the optical fraction of such strong bars remains at ~(30% +- 6%) from the present-day out to look-back times of 2-6 Gyr (z~0.2-0.7) and 6-8 Gyr (z~0.7-1.0); it certainly shows no sign of a drastic decline at z>0.7. Our findings of a large and similar bar fraction at these three epochs favor scenarios in which cold gravitationally unstable disks are already in place by z~1, and where on average bars have a long lifetime (well above 2 Gyr). The distributions of structural bar properties in the two slices are, however, not statistically identical and therefore allow for the possibility that the bar strengths and sizes may evolve over time.Comment: Accepted by ApJ Letters, to appear in Nov 2004 issue. Minor revisions,updated reference

    z~7 galaxy candidates from NICMOS observations over the HDF South and the CDF-S and HDF-N GOODS fields

    Full text link
    We use ~88 arcmin**2 of deep (>~26.5 mag at 5 sigma) NICMOS data over the two GOODS fields and the HDF South to conduct a search for bright z>~7 galaxy candidates. This search takes advantage of an efficient preselection over 58 arcmin**2 of NICMOS H-band data where only plausible z>~7 candidates are followed up with NICMOS J-band observations. ~248 arcmin**2 of deep ground-based near-infrared data (>~25.5 mag, 5 sigma) is also considered in the search. In total, we report 15 z-dropout candidates over this area -- 7 of which are new to these search fields. Two possible z~9 J-dropout candidates are also found, but seem unlikely to correspond to z~9 galaxies. The present z~9 search is used to set upper limits on the prevalence of such sources. Rigorous testing is undertaken to establish the level of contamination of our selections by photometric scatter, low mass stars, supernovae (SNe), and spurious sources. The estimated contamination rate of our z~7 selection is ~24%. Through careful simulations, the effective volume available to our z>~7 selections is estimated and used to establish constraints on the volume density of luminous (L*(z=3), or -21 mag) galaxies from these searches. We find that the volume density of luminous star-forming galaxies at z~7 is 13_{-5}^{+8}x lower than at z~4 and >25x lower (1 sigma) at z~9 than at z~4. This is the most stringent constraint yet available on the volume density of >~L* galaxies at z~9. The present wide-area, multi-field search limits cosmic variance to <20%. The evolution we find at the bright end of the UV LF is similar to that found from recent Subaru Suprime-Cam, HAWK-I or ERS WFC3/IR searches. The present paper also includes a complete summary of our final z~7 z-dropout sample (18 candidates) identified from all NICMOS observations to date (over the two GOODS fields, the HUDF, galaxy clusters).Comment: 13 pages, 6 figures, 6 tables, accepted for publication in the Astrophysical Journal, replaced to match accepted version, see http://firstgalaxies.org/astronomers-area/ for a link to a complete reduction of the NICMOS observations over the two GOODS field

    Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids.

    Get PDF
    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson's disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders.This research study was funded in part by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium (UKPDC) and the NIHR rare disease translational research collaboration and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. We are also grateful to the Augustus Newman and Wolfson Foundations for their support. We thank the Royal Society for the University Research Fellowship of Dr. Steven F. Lee (UF120277).This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acschemneuro.5b00324
    • …
    corecore