29 research outputs found

    JISC Metadata Schema Registry

    Get PDF

    FireGrid: An e-infrastructure for next-generation emergency response support

    Get PDF
    Peer reviewed paper published in Journal of Parallel and Distributed Computing.The FireGrid project aims to harness the potential of advanced forms of computation to support the response to large-scale emergencies (with an initial focus on the response to fires in the built environment). Computational models of physical phenomena are developed, and then deployed and computed on High Performance Computing resources to infer incident conditions by assimilating live sensor data from an emergency in real time–or, in the case of predictive models, faster-than-real time. The results of these models are then interpreted by a knowledge-based reasoning scheme to provide decision support information in appropriate terms for the emergency responder. These models are accessed over a Grid from an agent-based system, of which the human responders form an integral part. This paper proposes a novel FireGrid architecture, and describes the rationale behind this architecture and the research results of its application to a large-scale fire experiment.Emergency response, Grid, High performance computing, Multi-agent system, Knowledge-based reasoning, Fire simulation mode

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Driving the Space Revolution though the 3DExperience

    No full text

    Overview of the XNAV Program, X-ray Navigation using Celestial Sources

    Get PDF
    Satellite navigation systems rely heavily upon the Global Positioning System (GPS). GPS provides unrivaled performance in measurements of satellite ephemerides. Due to the increasing number of GPS system threats other options are now being evaluated, these new technologies are designed to augment or back-up the GPS system and be applied on other deep space missions. The Defense Advanced Research Projects Agency (DARPA) is developing one such navigation system, referred to as XNAV - “X-ray Source Based NAVigation for Autonomous Position Determination”. Theoretically, this system can use celestial X-ray sources to determine spacecraft attitude and position knowledge anywhere in the solar system. DARPA has contracted with Ball Aerospace & Technologies Corp. (BATC), Los Alamos National Laboratories (LANL), Johns Hopkins University – Applied Physics Laboratory (JHU-APL), and the National Institute of Standards & Technology (NIST) to develop a celestial navigation system for an on-orbit demonstration. The XNAV program is currently half-way through the 18-month feasibility study. The goal of the XNAV program is to prove the feasibility and viability of this approach through a culmination of detailed analyses and hardware demonstrations. This paper will provide an overview of the XNAV system and its expected capabilities; identify the development milestones; examine possible applications; and provide a top-level technical approach

    Rapid De-Orbit of LEO Space Vehicles using Towed Rigidizable Inflatable Structure (TRIS) Technology: Concept and Feasibility Assessment

    Get PDF
    The amount of debris in Earth orbit is increasing at an extraordinary rate and presents a growing hazard to orbital operations. Most of the debris in low earth orbit (LEO) is man made and consists of inactive spacecraft and/or launch vehicle upper stages. International treaties and US Government requirements dictate that all space vehicles (SV’s) must be de-orbited or moved to a higher orbit within a limited time (within 25 years of EOL – NASA/FCC Requirement). A separate guideline requires that medium to large spacecraft be disposed of via a controlled deorbit into a remote portion of the Pacific Ocean. The cost and mass of a spacecraft can increase significantly to meet these post-mission disposal requirements. For example, approximately 75% of the propellant on Ball Aerospace and Technologies (BATC) NPP spacecraft is used to perform a controlled de-orbit at the end of the mission. For a small spacecraft, a propulsion system may not be feasible because of mass, volume, and cost constraints. Without a de-orbit propulsion system, it can take years for a spacecraft to re-enter the Earth’s atmosphere. The rate of decay of this orbital debris/SV is dependent upon the orbit altitude, ballistic coefficient of the SV, activity of the sun (i.e. solar cycle) and variations in density of the upper atmosphere which makes de-orbit predictions difficult
    corecore