1,495 research outputs found
Space--Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm
The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most
efficient way to trade space against time for the SUBSET SUM problem. In the
random-instance setting, however, improved tradeoffs exist. In particular, the
recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a
significantly improved space--time tradeoff curve for instances with strong
randomness properties. Our main result is that these strong randomness
assumptions can be removed, obtaining the same space--time tradeoffs in the
worst case. We also show that for small space usage the dissection algorithm
can be almost fully parallelized. Our strategy for dealing with arbitrary
instances is to instead inject the randomness into the dissection process
itself by working over a carefully selected but random composite modulus, and
to introduce explicit space--time controls into the algorithm by means of a
"bailout mechanism"
Serum levels of DDT and liver function of malaria control personnel
The levels of DOT and metabolites in serum of 23 applicators involved in malaria control operations in Natal were determined using gas chromatography with electron capture detection. The me'!n levels (ug/l, ppb) were 61,7 DDT, 129,3 DDE, 11,0 DDD and 202,0 ∑DDT. Percentage DDT was 33,4%. These levels were higher than for an age matched sample of the general population in KwaZulu, who are protected by DDT against malaria. Percentage DDT correlated negatively with age (P < 0,05) for the applicators, suggesting a change in pharmacodynamics with age. Mean serum albumin, alkaline phosphatase, aspartate transferase and -γ-glutamyhransferase (GGT) levels did not differ significantly from an age-matched control group, but the mean GGT value for the applicators was higher than the' maximum of the laboratory normal range. Although not clinically significant, the alanine transferase was significantly higher in the applicators than in the control group. These higher levels suggest a possible risk to the health of the sprayers, but uncertainties remain
Measuring the to Ratio in a High Statistics Atmospheric Neutrino Experiment
By exploiting differences in muon lifetimes it is possible to distinguish
from charged current interactions in underground
neutrino detectors. Such observations would be a useful tool in understanding
the source of the atmospheric neutrino anomaly.Comment: 6 pages no figure
Model-based representational similarity analysis of blood-oxygen-level-dependent fMRI captures threat learning in social interactions
Past research has shown that attributions of intentions to other's actions determine how we experience these actions and their consequences. Yet, it is unknown how such attributions affect our learning and memory. Addressing this question, we combined neuroimaging with an interactive threat learning paradigm in which two interaction partners (confederates) made choices that had either threatening (shock) or safe (no shock) consequences for the participants. Importantly, participants were led to believe that one partner intentionally caused the delivery of shock, whereas the other did not (i.e. unintentional partner). Following intentional versus unintentional shocks, participants reported an inflated number of shocks and a greater increase in anger and vengeance. We applied a model-based representational similarity analysis to blood-oxygen-level-dependent (BOLD)-MRI patterns during learning. Surprisingly, we did not find any effects of intentionality. The threat value of actions, however, was represented as a trial-by-trial increase in representational similarity in the insula and the inferior frontal gyrus. Our findings illustrate how neural pattern formation can be used to study a complex interaction
Quantum correlations and fluctuations in the pulsed light produced by a synchronously pumped optical parametric oscillator below its oscillation threshold
We present a simple quantum theory for the pulsed light generated by a
synchronously pumped optical parametric oscillator (SPOPO) in the degenerate
case where the signal and idler trains of pulses coincide, below threshold and
neglecting all dispersion effects. Our main goal is to precise in the obtained
quantum effects, which ones are identical to the c.w. case and which ones are
specific to the SPOPO. We demonstrate in particular that the temporal
correlations have interesting peculiarities: the quantum fluctuations at
different times within the same pulse turn out to be totally not correlated,
whereas they are correlated between nearby pulses at times that are placed in
the same position relative to the centre of the pulses. The number of
significantly correlated pulses is of the order of cavity finesse. We show also
that there is perfect squeezing at noise frequencies multiple of the pulse
repetition frequency when one approaches the threshold from below on the signal
field quadrature measured by a balanced homodyne detection with a local
oscillator of very short duration compared to the SPOPO pulse length.Comment: 12 pages, 3 figure
Recommended from our members
Strain sensitivity enhancement in suspended core fiber tapers
Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs
Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface
The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is
investigated by scanning tunneling microscopy (STM). Single B acceptors are
identified due to their characteristic voltage-dependent contrast which is
explained by a local energetic shift of the electronic density of states caused
by the Coulomb potential of the negatively charged acceptor. In addition,
detailed analysis of the STM images shows that apparently one orbital is
missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the
absence of a localized dangling-bond state. Scanning tunneling spectroscopy
confirms a strongly altered density of states at the B atom due to the
different electronic structure of B compared to Si.Comment: 6 pages, 7 figure
A theoretical and empirical investigation of nutritional label use
Due in part to increasing diet-related health problems caused, among others, by obesity, nutritional labelling has been considered important, mainly because it can provide consumers with information that can be used to make informed and healthier food choices. Several studies have focused on the empirical perspective of nutritional label use. None of these studies, however, have focused on developing a theoretical economic model that would adequately describe nutritional label use based on a utility theoretic framework. We attempt to fill this void by developing a simple theoretical model of nutritional label use, incorporating the time a consumer spends reading labels as part of the food choice process. The demand equations of the model are then empirically tested. Results suggest the significant role of several variables that flow directly from the model which, to our knowledge, have not been used in any previous empirical work
- …