6,498 research outputs found

    Non-BPS Instability in Heterotic M-theory

    Get PDF
    We study the warped geometry of heterotic M-Theory in five dimensions where five-branes are included in the bulk. Five-branes wrapping holomorphic curves lead to BPS configurations where the junction conditions are automatically satisfied. We consider five-branes wrapped around non-supersymmetric cycles and show that the configuration is unstable. We describe explicitly the resulting time-dependent geometry where the bulk five-branes move towards the Horova-Witten boundary walls. The five-branes collide with the boundary walls in a finite time resulting in the restoration of supersymmetry.Comment: 12 pages, Late

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Cyber-physical systems design: transition from functional to architectural models

    Get PDF
    Normally, the design process of Cyber-Physical Systems (CPSs) starts with the creation of functional models that are used for simulation purposes. However, most of the time such models are not directly reused for the design of the architecture of the target CPS. As a consequence, more efforts than strictly necessary are spent during the CPS architecture design phase. This paper presents an approach called Assisted Transformation of Models (AST), which aims at transforming functional (simulation) models designed in the Simulink environment into architectural models represented in the Architecture Analysis and Design Language. Using AST, designers can perform a smooth transition between these two design phases, with an additional advantage of assuring the coupling between functional and architectural models. The use and benefits of AST are exemplified in the paper in a study devoted to for the design of a typical CPS: an Unmanned Aerial Vehicle.CAPE

    Depinning of three-dimensional drops from wettability defects

    Full text link
    Substrate defects crucially influence the onset of sliding drop motion under lateral driving. A finite force is necessary to overcome the pinning influence even of microscale heterogeneities. The depinning dynamics of three-dimensional drops is studied for hydrophilic and hydrophobic wettability defects using a long-wave evolution equation for the film thickness profile. It is found that the nature of the depinning transition explains the experimentally observed stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep

    Volume modulus inflation and a low scale of SUSY breaking

    Full text link
    The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.Comment: 28 pages, 8 figures, comments and references added, minor change in notation, version to be publishe

    Topological phase transitions in the non-Abelian honeycomb lattice

    Full text link
    Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermions interact with effective non-Abelian gauge fields. We show how in this setup a variety of topological phase transitions occur, which arise due to massless fermion pair production events, as well as pair annihilation events of two kinds: spontaneous and strongly-interacting induced. Moreover, such phase transitions can be controlled and characterized in optical lattice experiments.Comment: RevTex4 file, color figure

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η\eta^\prime mesons have been identified via the ηπ0π0η6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2θp112^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η\eta^\prime mesons are produced with relatively low kinetic energy (\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = -(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η\eta^\prime momenta of \approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment
    corecore