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Abstract

We study the warped geometry of heterotic M-Theory in five dimensions where five-branes are
included in the bulk. Five-branes wrapping holomorphic curves lead to BPS configurations
where the junction conditions are automatically satisfied. We consider five-branes wrapped
around non-supersymmetric cycles and show that the configuration is unstable. We describe
explicitly the resulting time-dependent geometry where the bulk five-branes move towards the
Horova-Witten boundary walls. The five-branes collide with the boundary walls in a finite time
resulting in the restoration of supersymmetry.
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1 Introduction

Five dimensional models with warped geometries have played a significant role in high energy
physics and cosmology during the past few years. Many puzzles in four dimensions can been

tackled by extending space-time to five dimensions[1]. In most settings the fifth dimension
is either an interval in models inspired by the Horava-Witten theory[2] or a half-line with an

AdS geometry for the Randall-Sundrum proposal[3]. The phenomenological applications are
numerous ranging from the hierarchy problem[4] to the cosmological constant problem[5].

Another guise of five dimensional models has been motivated by the AdS/CFT correspon-

dence( for a review see [6]). The search for a supersymmetric version of the RS scenario has
led to the concept of supergravity in singular spaces[7, 8]. A particularly interesting class of

supergravity models coupled to boundaries emerges from the compactification of M-theory on
Calabi-Yau three-folds[9]. In five dimensions this leads to gauged supergravity theories with

background fluxes. The origin of the background fluxes springs from the modification of the
Bianchi identities due to the Horava-Witten boundaries and the inclusion of five-branes in the

bulk[10]. The fluxes lead to the existence of potential terms for the vector multiplets.
The five dimensional solutions of the supergravity equations of motion have been widely

studied (for a review see [11]). In particular one finds BPS configurations preserving N = 1
supersymmetry in four dimensions. It also conspicuous to find cosmological solutions with a

time dependent background [12]. These solutions should have some relevance to the physics of
the early universe.

Recently non-BPS configurations have been extensively studied both from a theoretical and
phenomenological point of view[13, 14] and might eventually lead to a better understanding of

the origin of supersymmetry breaking. One of the purpose of the present letter is to consider

non-BPS configurations in the context of the strongly coupled heterotic string theory[15]. In
particular we shall be concerned with unstable configurations resulting from the presence of

five-branes wrapping non-supersymmetric cycles in the bulk.
In a first section we recall the necessary ingredients of five dimensional supergravity and

its link to heterotic M-theory. We describe the BPS situation with five-branes wrapping su-
persymmetric cycles. We pay particular attention to the boundary conditions and show that

the BPS property guarantees that the junction conditions are automatically satisfied. We then
break supersymmetry by wrapping five-branes around non-supersymmetric cycles. After recall-

ing the topological features of such configurations, we show that the modified boundary action
on the five-branes leads to an instability. We find explicit solutions of the equations of motion

where the five-branes move towards the boundary walls. The collision occurs within a time
proportional to the fifth-dimension radius.

2 Bulk Five-Branes and BPS Configurations

We compactify M-theory[2] on a Calabi-Yau three-fold with background fluxes switched on[9].

The compactification of eleven dimensional supergravity on a Calabi-Yau threefold with Hodge
numbers (h(1,1), h(2,1)) leads to an N=2 D=5 supergravity theory with h(1,1) − 1 vector multi-

plets and h(2,1) + 1 hypermultiplets. In particular there is always one universal hypermultiplet

containing the volume of the Calabi-Yau manifold Y . The other hypermultiplets belonging to
a quaternionic moduli space will not play a role here. Switching on background fluxes leads
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to a potential for the vector multiplets. The resulting supergravity is gauged with the axion
field charged under a U(1)R symmetry. One can introduce five-branes spread along four of

the five non-compact directions and two of the internal dimensions. For five-branes wrapping
holomorphic curves the resulting configuration is BPS and breaks half of the supersymmetries.

Let us now be a bit more specific. The compactifying manifold Y lives along the xA, A =
5 . . . 10, coordinates while space time is along xi, i = 0 . . . 3, and x5. The x5-axis is a Z2 orbifold

under x5 → −x5 that we identify with the interval [0, +πρ]. We also include N five-branes M i
5

extended along the four non-compact dimensions xi and wrapped around holomorphic curves Σi

in Y . The Bianchi identity for the four form G4 of eleven dimensional supergravity is modified
due to the presence of the five-brane

dG4 = 4
√

2(
κ

4π
)2/3[δM5 − δ0dx5 ∧ J (1) − δπρdx5 ∧ J (2)] (1)

with

J (i) =
1

16π2
(Tr(F (i) ∧ F (i))− 1

2
Tr(R ∧R)). (2)

Due to supersymmetry preservation each of the Horava-Witten planes carries a holomorphic

vector bundle characterized by the two forms F (i), i = 1, 2. We will choose F (2) = 0 and
consider the first plane at x5 = 0 as our brane-world. The fundamental class δM5 is defined by

∫
M5

f =
∫

M11

f ∧ δM5 (3)

and can be written as

δM5 =
N∑

i=1

δxi
0
dx5 ∧ δΣi (4)

where xi
0 are the coordinates of the five-branes. In appropriate units δΣi has dimension three

in eleven dimensional Planck units.
Due to the compactness of the x5 direction there is a topological condition to be satisfied

δΣ ≡ 1

16π2
(Tr(F (1) ∧ F (1))− Tr(R ∧ R)) (5)

as cohomology classes where δΣ =
∑N

i=1 δΣi . This explicitly determines the homology class of
the two dimensional surface Σ.

An explicit solution to the Bianchi identity is then

G4 = 2
√

2(
κ

4π
)2/3

N∑
i=0

εxi
0

δΣi (6)

where εxi
0

jumps from -1 to 1 at xi
0 and we have used the notation

δΣ0 = − 1

16π2
(Tr(F (1) ∧ F (1))− 1

2
Tr(R ∧ R)). (7)

In each interval separating the i-th and the (i+1)-th five-branes there are background magnetic
charges defined by

αi
I =

√
2εS

ρ

∫
CI

i∑
j=0

δΣj
(8)
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where the four-manifolds CI are Poincaré duals to the the ωI ’s forming a basis of the h(1,1)

holomorphic two-forms. We have introduced the expansion parameter εS = ( κ
4π

)2/3 2πρ
v2/3 and v

is the volume of Y . The effective action obtained by substituting in the eleven dimensional
supergravity action depends crucially on these magnetic charges.

The vector multiplets follow from the expansion of the Kahler form ω

ω = tIωI . (9)

The volume modulus of the Calabi-Yau manifold is given by

V =
1

6

∫
Y

ω ∧ ω ∧ ω. (10)

Defining
tI = V1/3XI (11)

the scalars in the vector multiplets parameterize the solutions of

CIJKXIXJXK = 6 (12)

where CIJK are the intersection numbers
∫
Y ωI ∧ωJ ∧ωK . The volume modulus belongs to the

universal hypermultiplet. The low energy bosonic action takes the form of a non-linear sigma
model with the metric defined by

GIJ = −1

2
CIJKXK +

1

8
(CILMXLXM)(CJPQXPXQ). (13)

In the Einstein frame ds2
E = V2/3ds2

str the action for the i-th interval reads[9]

Si
bulk = − 1

2κ2
5

∫
d5x

√
−g

(5)
E (R + GIJ∂µXI∂µXJ − 1

2V2
(∂V)2 − 1

2V2
αi

Iα
i
JGIJ(X)). (14)

The last term is the potential for the scalars in the vector multiplets.

Let us now consider the boundary actions. The boundary wall action reads [9]

S0
B =

√
2

κ2
5

∫
d4x

√
−g

(4)
E

α0
IX

I

V (15)

in the Einstein frame. The action on the three branes resulting from the bulk five-branes
depends on the nature of the surface Σ. For BPS configurations the BPS bound for five-branes

is saturated implying the equality between the central charge and the five-brane tension. This
leads to the action for each five-brane

Si
B = T5

∫ √
−g

(4)
strVol(Σi) (16)

in the string frame. Now using[16]

T5 =
2π

(4πκ)2/3
(17)

and

Vol(Σi) = v1/3
∫
Σi

ω (18)

one obtains the boundary action

Si
B =

1√
2κ2

5

∫
d4x

√
−g

(4)
E

[αi
I ]X

I

V (19)

with [αi
I ] = αi

I − α
(i−1)
I . Notice that this boundary action has the same functional form as the

boundary wall action up to a factor of two. In the following section we will concentrate on the

solutions of the equations of motions with a particular emphasis on the junction conditions.
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3 Non-BPS Configurations

Before describing the non-BPS configurations we analyse the solutions of the equations of
motions in the BPS case. Let us concentrate on the following warped geometry

ds2 = e2A(x5)dx2
// + dx2

5 (20)

and consider x5-dependent fields only. From the action one can read off the junction conditions
at the origin

[
dV
dx5

]0 = 2
√

2(α0.X)|0

[
dA

dx5
]0 =

√
2

3

(α0.X)

V |0

[
dXI

dx5
]0 =

√
2

V (α0
I −

2

3
(α0.X)XI)|0

(21)

where in the last equation we have used a Lagrange multiplier to impose the constraint (12).

Similarly the junction conditions at the one of the bulk five-branes read

[
dV
dx5

]xi
0

=
√

2([αi].X)|xi
0

[
dA

dx5
]xi

0
=

1

3
√

2

([αi].X)

V |xi
0

[
dXI

dx5
]xi

0
=

1√
2V ([αi

I ]−
2

3
([αi].X)XI)|xi

0

(22)

where the latter differ from the former by a factor of two. Due to the Z2 action one has

[f ]0 = 2f |0 relating the jump at the origin to twice the value at the origin.
One of the features of BPS configurations is that the junctions conditions are automatically

satisfied. This can be seen from the BPS equations deduced from the fermionic supersymmetry
variations

dV
dx5

=
√

2(αi.X)

dA

dx5
=

1

3
√

2

(αi.X)

V
dXI

dx5
=

1√
2V (αi

I −
2

3
(αi.X)XI)

(23)

in each interval. Combining these equations one gets[9]

d(V1/3XI)

dx5

= V−2/3 αi
I√
2

(24)
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from which we deduce that in each interval

CIJKtJtK = 2
√

2V1/3αi
Iy + CI (25)

where we have introduced dy = V−2/3dx5. Inverting (25) for tI gives

V =
1

6
CIJKtItJtK (26)

and the metric
ds2 = V1/3dx2

// + V4/3dy2. (27)

The position of the five-branes is not constrained reflecting the no-force condition.

The non-BPS configurations appear when the cohomology class δΣ given by (5) is not
effective, i.e. when the expansion

δΣ =
M∑
i=1

aiδCi , (28)

in terms of the classes δCi of holomorphic curves Ci, contains both positive and negative integers.

This implies that there is no holomorphic curve whose class coincides with δΣ. This topological
characterization of non-supersymmetric cycle has several physical consequences. On the one

hand the no-force condition between BPS five-branes is no longer valid. Writing

δΣ = [A]− [B] (29)

where [A] and [B] are effective cycles, i.e. there exist holomorphic curves A (resp. B ) whose

classes are [A] (resp. [B]), one expects that separating the five-branes wrapped around A from
the anti-five-branes wrapped around B is energetically disfavoured. Therefore we will consider

that the five-branes coincide and wrap a single surface in the class δΣ. Within the homology
class dual to δΣ we consider the surface S whose volume is minimum. As the brane tension

is minimal this configuration is stable for a given Calabi-Yau manifold Y , i.e. the five brane
wrapped around S gives rise to a stable non-BPS brane. The BPS bound states that the tension

of the five brane wrapped around S is bounded from below by the central charge

|Q| = T5v
1/3

∫
d4x

√
−g

(4)
str |

∫
Σ

ω|. (30)

Equality would imply that S is a calibrated surface[19, 20], i.e. a holomorphic curve, realizing a

BPS configuration. Such stable non-BPS branes are sensitive to deformations of the Calabi-Yau

manifold Y [21].
Let us denote by T > 1 the ratio beween the tension and the central charge. This leads to

the boundary action

Si
B =

1√
2κ2

5

∫
d4x

√
−g

(4)
E

[αI ]X
I

V T (31)

with

αI =

√
2εS

ρ

∫
CI

δΣ. (32)

The effect of supersymmetry breaking is to modify the boundary action. In particular the

bulk equations of motion are still the same as before supersymmetry breaking. Therefore the

solutions of the bulk equations of motion are not modified by the supersymmetry breaking
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mechanism. We first assume that T is independent of V and XI . The only effect of supersym-
metry breaking is to alter the boundary conditions

[∂nV]x0 =
√

2T ([α].X)|x0

[∂nA]x0 =
T

3
√

2

([α].X)

V |x0

[∂nXI ]x0 =
T√
2V ([αI ]− 2

3
([α].X)XI)|x0

(33)

where ∂n is the normal derivative. The boundary conditions deduced from the bulk solutions

do not match with the boundary conditions arising from the non-BPS brane action. Such a
discrepancy has already been analysed in the context of supergravity in singular spaces [17].

In particular we expect that the presence of a non-BPS brane destabilizes the vacuum. The
perfect balance between the gravitational and scalar forces disappears and the non-BPS brane

moves towards the boundary walls.
We can generate time-dependent conformally flat solutions from the static solutions[17, 18].

This is most easily achieved by using a boost along the x5 direction. To do so we first introduce
conformal coordinates so that the metric becomes

ds2
5 = a2(u)(dx2 + du2). (34)

where

a2 = V1/3, du = V1/2dy. (35)

Under a boost and a rescaling the new solutions of the bulk equations of motions are

Ã(u, η) = A(u + hη,
αi

I√
1− h2

)

Ṽ(u, η) = V(u + hη,
αi

I√
1− h2

)

X̃I(u, η) = XI(u + hη,
αi

I√
1− h2

)

(36)

where η is the conformal time. We have displayed the explicit dependence on the magnetic

charges αi
I . One can now use the BPS equations satisfied by (A,V, XI) to deduce that

∂nṼ =

√
2√

1− h2
(αi.X̃)

∂nÃ =
1

3
√

2
√

1− h2

(αi.X̃)

Ṽ
∂nX̃I =

1√
2
√

1− h2

1

Ṽ (αi
I −

2

3
(αi.X̃)X̃I)

(37)

in each of the two intervals. Evaluating the jumps at u0, the fixed coordinate of the non-

BPS brane, and using (37) one finds that the boundary conditions are automatically satisfied
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provided that

h = ±
√

T 2 − 1

T
. (38)

Notice that this requires T ≥ 1. This is exactly the BPS bound with a static solution only in

the BPS case.
After applying the boost the two boundary walls are moving and the non-BPS brane is

static. By reverting to the original coordinates one finds that the solution describes a moving
non-BPS brane surrounded by two static boundary walls. As the bulk equations of motions

are not modified by the presence of the non-BPS brane the boundary conditions at the two
boundary walls are automatically satisfied. The moving non-BPS brane eventually hits the

boundary walls in a finite time determined by the speed h. For a generic supersymmetry
breaking parameter the life-time of the non-BPS brane is of the order of the size of the fifth

dimension.
When the supersymmetry breaking T depends on V and XI , the bulk equations are still

satisfied but the boundary conditions cannot be simply fulfilled by applying a boost in the fifth
direction. In [15] the case where supersymmetry is broken in this fashion by one of the boundary

walls was considered. It has been shown that static solutions would require a fine-tuning of the
radius of the extra dimension and of the magnetic charges. The latter being unlikely because

this requires tuning continuous and discrete variables. From our point of view the reason for

the non-existence of static solution follows from the absence of balance between the forces on
the non-BPS brane. It seems likely that an appropriate change of variables performed on the

bulk solutions will imply the matching of the boundary conditions in this more general setting.
The time dependence of the resulting solution would describe the motion of the non-BPS brane

towards the boundary walls.
Let us now briefly discuss the fate of the non-BPS brane after hitting one of the boundary

walls. First of all the case of BPS five branes merging with the boundary walls has been exten-
sively studied[22]. In particular one finds small instanton transitions where the gauge bundle

is modified. In the non-BPS case the flux conservation condition indicates that supersymme-
try configurations such as the standard embedding case can spontaneously appear after the

collision. This leads to a restoration of supersymmetry.

4 Conclusion

We have described the sharp difference between BPS and non-BPS configurations in heterotic
M-Theory. In particular we have explicitly shown that the absence of balance between the

gravitational and scalar forces leads to the motion of the non-BPS five-branes towards the
boundary walls. Due to the finite size of the fifth dimension the life-time of the non-BPS

configuration is measured in units of the eleven dimensional Planck length. Nevertheless one
may use the resulting configuration in a phenomenological way by considering that the size

of the extra dimension is large. Indeed the BPS condition on the boundary walls guarantees

the absence of a radion potential and therefore allows to consider an arbitrarily large extra
dimension. Moreover by tuning the supersymmetry breaking scale one may consider the speed

of the extra dimension to be sufficiently small to allow for an adiabatic treatment. The resulting
scenario might be useful in order to study the supersymmetry breaking induced by non-BPS

branes in brane-world models.
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