3,773 research outputs found

    Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples

    Full text link
    Interpreting samples from likelihood or posterior probability density functions is rarely as straightforward as it seems it should be. Producing publication-quality graphics of these distributions is often similarly painful. In this short note I describe pippi, a simple, publicly-available package for parsing and post-processing such samples, as well as generating high-quality PDF graphics of the results. Pippi is easily and extensively configurable and customisable, both in its options for parsing and post-processing samples, and in the visual aspects of the figures it produces. I illustrate some of these using an existing supersymmetric global fit, performed in the context of a gamma-ray search for dark matter. Pippi can be downloaded and followed at http://github.com/patscott/pippi .Comment: 4 pages, 1 figure. v3: Updated for pippi 2.0. New features include hdf5 support, out-of-core processing, inline post-processing with arbitrary Python code in the input file, and observable-specific data cuts. Pippi can be downloaded from http://github.com/patscott/pipp

    Model-Independent Bounds on a Light Higgs

    Get PDF
    We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constructed a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative operators in the effective Lagrangian, references adde

    RECAST: Extending the Impact of Existing Analyses

    Full text link
    Searches for new physics by experimental collaborations represent a significant investment in time and resources. Often these searches are sensitive to a broader class of models than they were originally designed to test. We aim to extend the impact of existing searches through a technique we call 'recasting'. After considering several examples, which illustrate the issues and subtleties involved, we present RECAST, a framework designed to facilitate the usage of this technique.Comment: 13 pages, 4 figure

    Light neutralino dark matter in the MSSM and its implication for LHC searches for staus

    Get PDF
    It was shown in a previous study that a lightest neutralino with mass below 30 GeV was severely constrained in the minimal supersymmetric standard model (MSSM), unless it annihilates via a light stau and thus yields the observed dark matter abundance. In such a scenario, while the stau is the next-to-lightest supersymmetric particle (NLSP), the charginos and the other neutralinos as well as sleptons of the first two families are also likely to be not too far above the mass bounds laid down by the Large Electron Positron (LEP) collider. As the branching ratios of decays of the charginos and the next-to-lightest neutralino into staus are rather large, one expects significant rates of tau-rich final states in such a case. With this in view, we investigate the same-sign ditau and tri-tau signals of this scenario at the Large Hadron Collider (LHC) for two MSSM benchmark points corresponding to light neutralino dark matter. The associated signal rates for these channels are computed, for the centre-of-mass energy of 14 TeV. We find that both channels lead to appreciable rates if the squarks and the gluino are not too far above a TeV, thus allowing to probe scenarios with light neutralinos in the 14 TeV LHC run with 10-100 fb^{-1}.Comment: 19p, 4 Fig

    SUSY parameter determination at the LHC using cross sections and kinematic edges

    Full text link
    We study the determination of supersymmetric parameters at the LHC from a global fit including cross sections and edges of kinematic distributions. For illustration, we focus on a minimal supergravity scenario and discuss how well it can be constrained at the LHC operating at 7 and 14 TeV collision energy, respectively. We find that the inclusion of cross sections greatly improves the accuracy of the SUSY parameter determination, and allows to reliably extract model parameters even in the initial phase of LHC data taking with 7 TeV collision energy and 1/fb integrated luminosity. Moreover, cross section information may be essential to study more general scenarios, such as those with non-universal gaugino masses, and distinguish them from minimal, universal, models.Comment: 22 pages, 8 figure

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Implications of LHC Searches on SUSY Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter

    Full text link
    We study the implications of LHC searches on SUSY particle spectra using flat scans of the 19-parameter pMSSM phase space. We apply constraints from flavour physics, g_mu-2, dark matter and earlier LEP and Tevatron searches. The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is assessed by reproducing with fast simulation the recent CMS analyses after validation on benchmark points. We present results in terms of the fraction of pMSSM points compatible with all the constraints which are excluded by the LHC searches with 1 fb^{-1} and 15 fb^{-1} as a function of the mass of strongly and weakly interacting SUSY particles. We also discuss the suppression of Higgs production cross sections for the MSSM points not excluded and contrast the region of parameter space tested by the LHC data with the constraints from dark matter direct detection experiments.Comment: 14 pages, 13 figures. v2: increased statistics, to appear in EPJ

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    The generalised NMSSM at one loop: fine tuning and phenomenology

    Full text link
    We determine the degree of fine tuning needed in a generalised version of the NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is significantly less than is found in the MSSM or NMSSM and extends the range of Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV. For universal boundary conditions analogous to the CMSSM the phenomenology is rather MSSM like with the singlet states typically rather heavy. For more general boundary conditions the singlet states can be light, leading to interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
    corecore