100 research outputs found

    REGENT-Handbuch

    Get PDF

    Electric-octupole and pure-electric-quadrupole effects in soft-x-ray photoemission

    Get PDF
    Second-order [O(k^2), k=omega/c] nondipole effects in soft-x-ray photoemission are demonstrated via an experimental and theoretical study of angular distributions of neon valence photoelectrons in the 100--1200 eV photon-energy range. A newly derived theoretical expression for nondipolar angular distributions characterizes the second-order effects using four new parameters with primary contributions from pure-quadrupole and octupole-dipole interference terms. Independent-particle calculations of these parameters account for a significant portion of the existing discrepancy between experiment and theory for Ne 2p first-order nondipole parameters.Comment: 4 pages, 3 figure

    The emergence of altruism as a social norm

    Get PDF
    Expectations, exerting influence through social norms, are a very strong candidate to explain how complex societies function. In the Dictator game (DG), people expect generous behavior from others even when they cannot enforce any sharing of the pie. Here we assume that people donate following their expectations, and that they update their expectation after playing a DG by reinforcement learning to construct a model that explains the main experimental results in the DG. Full agreement with the experimental results is reached when some degree of mismatch between expectations and donations is added into the model. These results are robust against the presence of envious agents, but affected if we introduce selfish agents that do not update their expectations. Our results point to social norms being on the basis of the generous behavior observed in the DG and also to the wide applicability of reinforcement learning to explain many strategic interactions

    Role of activin receptors in driving central nervous system regeneration of myelin

    Get PDF
    Myelin damage in central nervous system white matter disorders such as multiple sclerosis (MS) leads to axonal dysfunction/degeneration and clinical disability. Regeneration of myelin (termed remyelination) can occur and requires oligodendrocyte progenitor cells (OPCs) to differentiate into mature oligodendrocytes, which are then able to make contact with axons and ensheath them. However, this process fails in progressive MS. The lack of approved therapies aimed at promoting remyelination highlight the need to identify mechanisms driving this regenerative process to develop novel therapeutic strategies. Previous work in the lab identified the TGF-ÎČ superfamily member activin-A as being increased during remyelination in vivo and sufficient in stimulating activin receptor-driven OPC differentiation into mature oligodendrocytes in vitro. Here, these studies were followed up by undertaking a comprehensive assessment of the role of activin receptors and their ligands during remyelination. Using an ex vivo brain explant model of demyelination, the stimulation of activin receptors using activin-A was sufficient to enhance remyelination. Blocking activin receptors using an endogenous inhibitor (Inhibin) hindered remyelination, demonstrating the requirement of activin receptor signalling for this process. Surprisingly, blocking the binding of endogenous activin-A to activin receptors using follistatin did not impact remyelination, suggesting that other activin receptor ligands are involved in driving remyelination. As activin receptors may bind other ligands in the TGF-ÎČ superfamily, the expression and function of alternative ligands was investigated, and each was found to be important for remyelination (albeit with distinct timing/ effects). Both activin receptors and their ligands were expressed on microglia/macrophages in mouse and human disease tissue. Finally, analysis of activin receptor expression on oligodendrocytes in human tissue revealed potential functional differences between receptor subtypes. Together, these results demonstrate previously undefined roles of a subset of TGF-ÎČ superfamily members in regulating remyelination, and have implications for the development of novel approaches to enhancing remyelination in disease

    Subsequent Surgery After Revision Anterior Cruciate Ligament Reconstruction: Rates and Risk Factors From a Multicenter Cohort

    Get PDF
    BackgroundWhile revision anterior cruciate ligament reconstruction (ACLR) can be performed to restore knee stability and improve patient activity levels, outcomes after this surgery are reported to be inferior to those after primary ACLR. Further reoperations after revision ACLR can have an even more profound effect on patient satisfaction and outcomes. However, there is a current lack of information regarding the rate and risk factors for subsequent surgery after revision ACLR.PurposeTo report the rate of reoperations, procedures performed, and risk factors for a reoperation 2 years after revision ACLR.Study designCase-control study; Level of evidence, 3.MethodsA total of 1205 patients who underwent revision ACLR were enrolled in the Multicenter ACL Revision Study (MARS) between 2006 and 2011, composing the prospective cohort. Two-year questionnaire follow-up was obtained for 989 patients (82%), while telephone follow-up was obtained for 1112 patients (92%). If a patient reported having undergone subsequent surgery, operative reports detailing the subsequent procedure(s) were obtained and categorized. Multivariate regression analysis was performed to determine independent risk factors for a reoperation.ResultsOf the 1112 patients included in the analysis, 122 patients (11%) underwent a total of 172 subsequent procedures on the ipsilateral knee at 2-year follow-up. Of the reoperations, 27% were meniscal procedures (69% meniscectomy, 26% repair), 19% were subsequent revision ACLR, 17% were cartilage procedures (61% chondroplasty, 17% microfracture, 13% mosaicplasty), 11% were hardware removal, and 9% were procedures for arthrofibrosis. Multivariate analysis revealed that patients aged <20 years had twice the odds of patients aged 20 to 29 years to undergo a reoperation. The use of an allograft at the time of revision ACLR (odds ratio [OR], 1.79; P = .007) was a significant predictor for reoperations at 2 years, while staged revision (bone grafting of tunnels before revision ACLR) (OR, 1.93; P = .052) did not reach significance. Patients with grade 4 cartilage damage seen during revision ACLR were 78% less likely to undergo subsequent operations within 2 years. Sex, body mass index, smoking history, Marx activity score, technique for femoral tunnel placement, and meniscal tearing or meniscal treatment at the time of revision ACLR showed no significant effect on the reoperation rate.ConclusionThere was a significant reoperation rate after revision ACLR at 2 years (11%), with meniscal procedures most commonly involved. Independent risk factors for subsequent surgery on the ipsilateral knee included age <20 years and the use of allograft tissue at the time of revision ACLR

    Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber

    Get PDF
    Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions

    Multirater Agreement of the Causes of Anterior Cruciate Ligament Reconstruction Failure

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) reconstruction failure occurs in up to 10% of cases. Technical errors are considered the most common cause of graft failure despite the absence of validated studies. Limited data are available regarding the agreement among orthopaedic surgeons regarding the causes of primary ACL reconstruction failure and accuracy of graft tunnel placement.HypothesisExperienced knee surgeons have a high level of interobserver reliability in the agreement about the causes of primary ACL reconstruction failure, anatomic graft characteristics, and tunnel placement.Study designCohort study (diagnosis); Level of evidence, 3.MethodsTwenty cases of revision ACL reconstruction were randomly selected from the Multicenter ACL Revision Study (MARS) database. Each case included the patient's history, standardized radiographs, and a concise 30-second arthroscopic video taken at the time of revision demonstrating the graft remnant and location of the tunnel apertures. All 20 cases were reviewed by 10 MARS surgeons not involved with the primary surgery. Each surgeon completed a 2-part questionnaire dealing with each surgeon's training and practice, as well as the placement of the femoral and tibial tunnels, condition of the primary graft, and the surgeon's opinion as to the causes of graft failure. Interrater agreement was determined for each question with the kappa coefficient and the prevalence-adjusted, bias-adjusted kappa (PABAK).ResultsThe 10 reviewers have been in practice an average of 14 years and have performed at least 25 ACL reconstructions per year, and 9 were fellowship trained in sports medicine. There was wide variability in agreement among knee experts as to the specific causes of ACL graft failure. When participants were specifically asked about technical error as the cause for failure, interobserver agreement was only slight (PABAK = 0.26). There was fair overall agreement on ideal femoral tunnel placement (PABAK = 0.55) but only slight agreement on whether a femoral tunnel was too anterior (PABAK = 0.24) and fair agreement on whether it was too vertical (PABAK = 0.46). There was poor overall agreement for ideal tibial tunnel placement (PABAK = 0.17).ConclusionThis study suggests that more objective criteria are needed to accurately determine the causes of primary ACL graft failure as well as the ideal femoral and tibial tunnel placement in patients undergoing revision ACL reconstruction
    • 

    corecore