5,050 research outputs found

    Numerical simulations of the internal shock model in magnetized relativistic jets of blazars

    Full text link
    The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.Comment: 7 pages, 5 figures, proceeding of the "Swift: 10 Years of Discovery" conference (December 2014, Rome, Italy

    Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

    Full text link
    The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the γ\gamma-ray band was performed, in order to identify the effects of the magnetic field.Comment: Proceedings of the meeting The Innermost Regions of Relativistic Jets and Their Magnetic Fields, June 10-14, 2013, Granada (Spain), 4 pages, 3 figure

    CHEMSKETCH PARA APRENDER QUÍMICA ORGÁNICA

    Get PDF
    El aprendizaje de la química orgánica en el nivel medio superior (NMS) siempre ha sido complicado. Los estudiantes tienen serias dificultades para aprender la nomenclatura y la estructura de compuestos orgánicos, así como sus propiedades físicas y químicas, dada su complejidad; es por ello que se requieren estrategias innovadoras y efectivas que permitan facilitar esta labor. Nosotros tradicionalmente utilizábamos modelos tridimensionales con tal propósito, que conseguíamos hasta cierto punto, sin embargo no era suficiente. Recientemente hemos implementado el uso del software chemsketch para facilitar el aprendizaje de la química orgánica. Cuando estudiamos la estructura, el nombre sistemático y las características de los principales grupos funcionales de compuestos orgánicos en las salas de cómputo del plantel, les mostramos de manera práctica e interactiva las aplicaciones de chemsketch a los estudiantes, para que puedan ejercitarse en el manejo del software conforme ellos aprenden estas características de los compuestos orgánicos. Además, la aplicación de este software nos ha facilitado a los docentes la elaboración de series de ejercicios, exámenes y otros materiales didácticos de manera más sencilla, rápida y eficiente. Hemos implementado esta estrategia con estudiantes de las asignaturas de química y vida diaria y de química orgánica y bioquímica con buenos resultados hasta el momento, ya que chemsketch es fácil de utilizar, los estudiantes aprenden de manera interactiva y sus características permiten además estudiar otras propiedades de los compuestos orgánicos

    Comprehensive transient-state study for CARMENES-NIR high thermal stability

    Full text link
    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. As a first approach, the thermal stability has been limited to \pm 0.01K (within year period) over a working temperature of 243K. This can be achieved by means of several temperature-controlled rooms. The options considered to minimise the complexity of the thermal design are here presented, as well as the transient-state thermal analyses realised to make the best choice

    On the influence of a hybrid thermal-non-thermal distribution in the internal shocks model for blazars

    Get PDF
    Internal shocks occurring in blazars may accelerate both thermal and non-thermal electrons. While the non-thermal tail fills the higher end of the electron energy distribution (EED), thermal electrons populate the lowest energies of the shock-accelerated particles. In this paper, we examine the consequences that such a hybrid (thermal-non-thermal) EED has on the spectrum of blazars. Since the thermal component of the EED may extend to very low energies, the synchrotron emission of ultrarelativistic electrons may not be sufficiently accurate to compute blazar spectra. Thus, we replace the standard synchrotron process by the more general magneto-bremsstrahlung (MBS) mechanism encompassing the discrete emission of harmonics in the cyclotron regime, the transition from the discrete to continuum and the continuum emission in the synchrotron realm. In the γ-ray band, an EED of mostly thermal particles displays significant differences with respect to the one dominated by non-thermal particles. A thermally dominated EED produces a synchrotron self-Compton (SSC) peak extending only up to a few MeV, and the valley separating the MBS and the SSC peaks is much deeper than if the EED is dominated by non-thermal particles. The combination of these effects modifies the Compton dominance of a blazar, suggesting that the vertical scatter in the distribution of FSRQs and BL Lacs in the peak synchrotron frequency-Compton dominance parameter space could be attributed to different proportions of thermal/non-thermal particles in the EED of blazars
    corecore