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ABSTRACT
Internal shocks occurring in blazars may accelerate both thermal and non-thermal electrons.
While the non-thermal tail fills the higher end of the electron energy distribution (EED),
thermal electrons populate the lowest energies of the shock-accelerated particles. In this
paper, we examine the consequences that such a hybrid (thermal–non-thermal) EED has on
the spectrum of blazars. Since the thermal component of the EED may extend to very low
energies, the synchrotron emission of ultrarelativistic electrons may not be sufficiently accurate
to compute blazar spectra. Thus, we replace the standard synchrotron process by the more
general magneto-bremsstrahlung (MBS) mechanism encompassing the discrete emission of
harmonics in the cyclotron regime, the transition from the discrete to continuum and the
continuum emission in the synchrotron realm. In the γ -ray band, an EED of mostly thermal
particles displays significant differences with respect to the one dominated by non-thermal
particles. A thermally dominated EED produces a synchrotron self-Compton (SSC) peak
extending only up to a few MeV, and the valley separating the MBS and the SSC peaks is
much deeper than if the EED is dominated by non-thermal particles. The combination of these
effects modifies the Compton dominance of a blazar, suggesting that the vertical scatter in the
distribution of FSRQs and BL Lacs in the peak synchrotron frequency–Compton dominance
parameter space could be attributed to different proportions of thermal/non-thermal particles
in the EED of blazars.

Key words: MHD – radiation mechanisms: non-thermal – radiation mechanisms: thermal –
radiative transfer – shock waves – BL Lacertae objects: general.

1 IN T RO D U C T I O N

In this work, we study the emission mechanisms in blazars, a sub-
class of radio-loud active galactic nuclei (AGN) in which a relativis-
tic jet is propagating in the direction very close to the line of sight
towards us (e.g. Urry & Padovani 1995). An important observed
component of the blazar radiation is produced by the non-thermal
emission from the relativistic jet they are assumed to host. Its spec-
trum shows two broad peaks. The first one is located between radio
and X-rays and the second one between X-rays and γ -rays (e.g. Fos-
sati et al. 1998). Depending on the peak frequencies and the strength
of the emission lines, blazars can be further subdivided into BL
Lac objects and flat spectrum radio-quasars (FSRQS; e.g. Giommi
et al. 2012). There is a broad consensus that the low-frequency peak
is due to the synchrotron emission from the relativistic electrons
gyrating in a magnetic field. As for the high-frequency peak, cur-
rently there are two contending models. In the leptonic model, the
high-energy emission is produced by the relativistic electrons that

� E-mail: jesus.rueda@uv.es (JMR-B); petar.mimica@uv.es (PM);
miguel.a.aloy@uv.es (MAA)

inverse-Compton upscatter both the external low-frequency photons
(external inverse-Compton; EIC) and the synchrotron photons pro-
duced in the jet (synchrotron self-Compton; SSC). In the hadronic
model, there are relativistic protons in the jet that, in the pres-
ence of very strong magnetic fields, are able to produce the high-
energy emission via both proton-synchrotron radiation (directly)
and electromagnetic cascades (see e.g. Boettcher 2010, and refer-
ences therein for a detailed discussion of both models). In this work,
we limit our discussion to the leptonic model.

The blazar-emitted radiation results from the dissipation of the
jet kinetic and Poynting flux. In our work, we consider the inter-
nal shocks (IS) model, in which the aforementioned dissipation is
produced by the collision of cold and dense blobs (‘shells’) within
the jet (e.g. Rees & Meszaros 1994; Spada et al. 2001; Mimica
et al. 2004). Each shell collision can produce IS that accelerate
electrons that are ultimately responsible for the observed emission.

In the previous papers on this topic, we investigated the influence
of the magnetic field on the IS dynamics (Mimica & Aloy 2010)
and emission (Mimica, Aloy & Müller 2007; Mimica & Aloy 2012;
Rueda-Becerril, Mimica & Aloy 2014, hereafter, the latter two pa-
pers will be referred as MA12 and RMA14, respectively). In this
paper, we shift our focus to the influence of the properties of the
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electron energy distribution (EED) on the observed emission. Gi-
annios & Spitkovsky (2009) proposed a mixed Maxwellian/non-
thermal EED (‘hybrid distribution’ or HD hereafter) as an expla-
nation of some of the features of the gamma-ray burst prompt and
afterglow emission. In this paper, we introduce an HD into our nu-
merical code and study how it affects the blazar light curves and
spectra.

Since the HD thermal component extends to subrelativistic elec-
tron energies, we need to reconsider the emission mechanism (syn-
chrotron) we employed in previous works. The radiation from
charged particles traversing a magnetic field is known as magneto-
bremsstrahlung (MBS). Depending on the speed βc of the particles,
this radiation is categorized into cyclotron radiation if (β � 1)
and synchrotron radiation (β ∼ 1). Both regimes have been stud-
ied broadly and accurate analytical expressions for each have been
developed (e.g. Ginzburg & Syrovatskii 1965; Pacholczyk 1970;
Rybicki & Lightman 1979). However, the cyclo-synchrotron radia-
tion, i.e. the transrelativistic regime, has no simple analytic descrip-
tion. Therefore, here we implement a cyclo-synchrotron (MBS)
emission model in our code, to be able to accurately deal with the
emission at all energies of the EED.

In the next section, we briefly summarize the dynamics of shell
collisions and the resulting IS. In Sections 3 and 4, we explain how
the HD and MBS are included in our numerical models. The study
of the influence of an HD is presented in Section 6. In Section 8,
we discuss our results and present our conclusions.

2 SH E L L DY NA M I C S A N D E M I S S I O N I N T H E
I S M O D E L

We model the shell dynamics and the shock properties in blazar
jets as in MA12. Assuming a cylindrical outflow and neglecting
the jet lateral expansion (it plays a negligible role in blazar jets,
see e.g. Mimica et al. 2004), we can simplify the problem of col-
liding shells to a one-dimensional interaction of two cylindrical
shells with cross-sectional radius R and thickness �r. The slower
(right) shell Lorentz factor is denoted by �R, while the faster (left)
shell moves with �L = (1 + �g)�R. In the previous expression,
�g stands for the relative Lorentz factor between the interacting
shells. We assume that the shells are initially cold, so that the fluid
thermal pressure (P) to rest-mass energy density ratio χ := P/ρc2

� 1, where ρ is the fluid rest-mass density. The shell magneti-
zation is controlled by a parameter σ := B2/(4π�2ρc2), where
B is the strength of the large-scale magnetic field (measured in
the laboratory frame), that in our model is assumed to be perpen-
dicular to the shell propagation direction. Note that the decay of
poloidal fields (i.e. parallel to the shell propagation direction) with
distance to the blazar central engine will be faster than that of
toroidal fields (perpendicular to the shell propagation direction).
Certainly, the rate at which the magnetic field strength may vary
with the distance from the blazar central engine depends on the ge-
ometry adopted by the jet. If the jet undergoes a conical expansion,
a decaying power law with the distance to the central engine is theo-
retically expected for the poloidal magnetic field (see e.g. Blandford
& Rees 1974; Königl 1981). Pure power-law expressions for the de-
cay of the magnetic field are roughly adequate until distances ∼1 pc
from the origin (see e.g. Beskin & Nokhrina 2006; Krichbaum
et al. 2006; McKinney 2006; Asada & Nakamura 2012; Nakamura
& Asada 2013; Mohan et al. 2015). Furthermore, any pre-existing
magnetic field component perpendicular to the IS will be amplified
by the standard MHD shock compression. Thus, we expect that the
shells shall possess a magnetic field whose dominant component be

perpendicular to the propagation of shell and, hence, our approxi-
mation is justified.

Assuming that the number density in an unshocked shell is given
by (see equation 3 of MA12)

ni = L
πR2mpc3

[
�2

i (1 + ε + χ + σi) − �i

] √
1 − �−2

i

, (1)

where mp is the mass of proton, c is the speed of light, ε is the
specific internal energy (see equation 2 of MA12), L is the kinetic
luminosity of the shells and the index i = L, R indicates which shell
we are referring to.

Once the number density, the thermal pressure, the magnetization
and the Lorentz factor of both shells have been determined, we use
the exact Riemann solver of Romero et al. (2005), suitably modified
to account for arbitrarily large magnetizations by Aloy & Mimica
(2008), to compute the evolution of the shell collision. In particular,
we calculate the properties of the shocked shell fluid (shock velocity,
compression factor, magnetic field) that we then use to obtain the
synthetic observational signature (see the following section). Both
in MA12 and RMA14, it is assumed that a non-thermal EED is
injected behind each IS (see e.g. section 3 of MA12), and the code
computes the light curve by taking into account the synchrotron,
SSC and (if needed) EIC processes (section 4 of MA12). The main
modifications introduced by this work are in the hybrid EED injec-
tion spectrum and in the replacement of the pure synchrotron by the
MBS emission.

3 H YBRI D D I STRI BUTI ON

Most IS models for blazars assume that the radiation is produced
by a power-law energy distribution of non-thermal electrons accel-
erated behind the shock (Spada et al. 2001; Mimica et al. 2004;
Böttcher & Dermer 2010). More specifically, the number density
of non-thermal particles per unit time and unit Lorentz factor (both
quantities measured in the rest frame of the fluid1) is

dnnth

dt dγ
= Q0γ

−qH (γ ; γ nth
min, γ

nth
max), (2)

where q is the power-law index, γ nth
min and γ nth

max are lower and upper
cut-offs for the Lorentz factor of the injected electrons, respectively,
and Q0 the normalization coefficient. The interval function is defined
as

H (x; a, b) :=
{

1, a ≤ x ≤ b

0, elsewhere
. (3)

As in previous works (Mimica, Giannios & Aloy 2010; MA12),
γ nth

max is obtained by assuming that the synchrotron cooling time-scale
is proportional to the gyration time-scale,

γ nth
max =

(
3m2

ec
4

4πaacce3BS

)1/2

, (4)

1 The fluid rest frame coincides with the frame of reference of the contact
discontinuity separating the forward and reverse shocks resulting from the
collision of two shells, since the fluid in the shocked regions moves with the
same speed as the contact discontinuity. As we only inject particles behind
the forward and the reverse shocks, proper fluid quantities are identical be-
tween these two shocks to those measured in the contact discontinuity frame.
We note that hereafter, different from MA12, we will not annotate with a
prime thermodynamical quantities measured in the contact discontinuity
frame.
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where e is the electron charge, me is the electron mass, BS is the total
magnetic field in the shock and aacc ≥ 1 is the acceleration efficiency
parameter (Böttcher & Dermer 2010; Joshi & Böttcher 2011).

As in MA12 and RMA14, we assume that there exists a stochastic
magnetic field BS, st, which is created by the shocks produced due
to the collision of the shells. By definition, its strength is a fraction
εB of the internal energy density of the shocked shell uS (obtained,
in our case, by the exact Riemann solver):

BS,st =
√

8πεBuS. (5)

Since we allow for arbitrarily magnetized shells, there is also a
macroscopic magnetic field component BS, mac, which is a direct
output of the exact Riemann solver. The total magnetic field is then

B :=
√

B2
S,st + B2

S,mac.

The motivation for an HD comes from recent PIC simulations
of weakly magnetized relativistic shocks (e.g. Sironi, Spitkovsky
& Arons 2013). These simulations find that the energy distribu-
tion of particles follows a thermal distribution plus a high-energy
power-law tail. To describe the energy distribution of relativistic
thermal particles, we use the normalized Maxwell–Jüttner distri-
bution function (Chandrasekhar 1939, p. 394) so that the number
density of thermal particles per unit time and unit Lorentz factor
(both quantities measured in the rest frame of the fluid) reads

dnth

dt dγ
= Qth

γ 2β

�eK2(1/�e)
e−γ /�e , (6)

where Qth is the thermal normalization factor in units of the num-
ber density per unit of proper time, γ is the Lorentz factor of
the electrons, β := (1 − γ −2)−1/2 is the velocity of the electrons,
�e := kBT/mec2 is the dimensionless electron temperature, kB is
the Boltzmann constant and K2(x) is the modified Bessel func-
tion of second kind. Though the Maxwell–Jütner distribution is
valid for any Lorentz factor γ ∈ [1, ∞], for numerical purposes,
we limit the previous interval to [γ th

min, γ
th
max]. We typically em-

ploy γ th
min = γ (β = 0.01) 	 1.000 05 and γ th

max ∼ 103. Giannios &
Spitkovsky (2009) proposed an approximation to an HD (in the
GRB context) consisting of a thermal distribution below a thresh-
old Lorentz factor and a power-law tail above it. The value of the
threshold and the number of particles in each part is determined
by a parameter: the proportion of non-thermal particles. A similar
approach has been used before by Zdziarski, Coppi & Lamb (1990)
and Li, Kusunose & Liang (1996), splitting the distribution at the
mean Lorentz factor of the Maxwell–Jüttner distribution:

〈γ 〉 = 3�e + K1(1/�e)

K2(1/�e)
. (7)

In the standard IS model, a fraction εe of the energy dissipated at
the shock accelerates the electrons into a pure power-law distribu-
tion. In our study, we avoid both finding a break Lorentz factor and
estimating the value of εe. Instead, we compute the normalization
coefficients of each component by assuming that all thermal energy
dissipated at the shock is used to accelerate particles. A fraction ζ e

of the energy goes into a non-thermal distribution (the rest going
into the thermal part), i.e.

ζe
dEinj

dt
= mec

2VaccQ0P
(
q − 1; γ nth

min, γ
nth
max

)
, (8)

where Vacc = πR2�racc is the volume where the acceleration takes
place (see section 3.2 of MA 12 for more details), R the cross-
sectional radius of the cylindrical shells (which we assume for
simplicity that have the same diameter as the relativistic jet in
which they move) and Q0 is the non-thermal normalization factor

in units of number density per unit of time. Equation (8) is obtained
by integrating equation (2) multiplied by γ mec2 in the interval
[γ nth

min, γ
nth
max]. The function P is defined as

P (s; a, b) :=
∫ b

a

dx x−s . (9)

In a similar way, the fraction of energy injected into the thermal
part is

(1 − ζe)
dEinj

dt
= mec

2VaccQth〈γ 〉, (10)

Analogously to the injected energy density, the total number
density of injected particles per unit of proper time is

dninj

dt
= Qth + Q0P

(
q; γ nth

min, γ
nth
max

)
. (11)

In analogy to equations 10 and 14 in MA12, the total energy and
number of particles injection rates into the acceleration region are

dEinj

dt
= πR2uSβS,CDc, (12)

dNinj

dt
= πR2ni�i,CD βS,CDc, (13)

where uS is the internal energy density of the shocked shell, ni is the
number density in the shells given by equation (1), βS, cd is the speed
of the shock (see equation 5 in MA12) and �i, cd is the bulk Lorentz
factor of each of the shells measured in the contact discontinuity
(CD) frame (see footnote 1).

Assuming that the partition of the number of injected particles is
the same as that of the injected energy, we set the following relations
for the normalization coefficients in equation (11)

Q0P
(
q; γ nth

min, γ
nth
max

)
:= ζe

dninj

dt
(14)

Qth := (1 − ζe)
dninj

dt
. (15)

From equations (14) and (15), we find that

Q0 = ζeQth

(1 − ζe)P
(
q; γ nth

min, γ
nth
max

) . (16)

Finally, from equations (8), (10) and (16) we get the following
expression:

P
(
q − 1; γ nth

min, γ
nth
max

) = 〈γ 〉P (
q; γ nth

min, γ
nth
max

)
, (17)

from which we compute the lower cut-off of the non-thermal dis-
tribution γ nth

min using an iterative procedure. For numerical reasons,
we do not allow γ nth

min to be smaller than γ th
min.

Finally, we define the global bounds bracketing both the thermal
and non-thermal EED by

γ1 = min
(
γ nth

min, γ
th
min

)
and γM = max

(
γ nth

max, γ
th
max

)
. (18)

4 C Y C L O - S Y N C H ROT RO N E M I S S I O N

Including a thermal distribution of particles implies that low-energy
electrons will also contribute to the emissivity. Here, we develop a
formalism that covers the cyclo-synchrotron or MBS emission of
both non-relativistic and relativistic electrons.
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For an isotropic distribution of electrons n(γ ) the emissivity takes
the form (Rybicki & Lightman 1979)

jν = 1

4π

∫ ∞

1
dγ n(γ )Pν(γ ), (19)

where Pν(γ ) is the radiated power of an electron having a Lorentz
factor γ and the factor 1/4π comes from the angular normalization
of the isotropic particle distribution function. These electrons will
spiral around the magnetic field lines, moving with a pitch angle α.
The radiated powerPν(γ ), in the comoving frame (see footnote 1)
is

Pν(γ ) =
∫ 2π

0

∫ 1

−1
dφα dμα

∫ 2π

0

∫ 1

−1
dφ dμ ην(γ, ϑ, α), (20)

where φα is the azimuthal pitch angle, ϑ is the emission angle (the
angle between the emitted photon and the magnetic field), φ is the
azimuthal emission angle, μ= cos ϑ , μα = cos α and the function ην

is (see e.g. Oster 1961; Bekefi 1966; Melrose & McPhedran 1991),

ην(γ, μ, μα) = 2πe2ν2

c

∞∑
m=1

δ(ym)

[
(μ − βμα)2

1 − μ2
J 2

m(z)

+ β2(1 − μ2
α)J ′2

m (z)
]
, (21)

where m is an integer index annotating the number of the contribut-
ing harmonic,

ym := mνb

γ
− ν(1 − βμαμ), (22)

z := νγβ
√

1 − μ2
√

1 − μ2
α

νb

, (23)

νb := eB/2πmec is the non-relativistic gyrofrequency, Jm(x) is the
Bessel function of the first kind of order m and γ = 1/

√
1 − β2.

When the argument in the δ-function ym equals zero, we met the so-
called resonance condition (also known as the Doppler condition;
e.g. Leung, Gammie & Noble 2011; Melrose & McPhedran 1991)

mνb

γ
− ν(1 − βμαμ) = 0. (24)

The fulfilment of this condition represents the largest contribution to
the power emitted. For slow electrons (β � 1), the terms with small
values of m will dominate (manifesting as emission lines), while
for ultrarelativistic ones (β ∼ 1), the peak of the power radiated
shifts to larger values and the spectrum turns into a continuum. In
Fig. 1, we can observe these features along with the transrelativistic
regime. Since ην(γ , ϑ , α) depends neither on φα nor on φ, the
corresponding integration is straightforward. The final expression
for Pν(γ ) is then

Pν(γ ) = 8π3e2ν2

c

∫ 1

−1

∫ 1

−1
dμαdμ

∞∑
m=1

δ(ym)

×
[

(μ − βμα)2

1 − μ2
J 2

m(z) + β2(1 − μ2
α)J ′2

m (z)

]
. (25)

4.1 The numerical treatment

The numerical evaluation of the MBS emission (equation 25) is very
challenging because an integral over an infinite sum of functions Jm

and their derivatives J ′
m needs to be performed. Several techniques

have been used to compute such integral. An approximate analytic
formula was found by Petrosian (1981) using the steepest-descent

Figure 1. Single electron radiated power as a function of normalized fre-
quency computed for different energies (coloured lines) and with varying
degrees of accuracy. A colour version of this figure is available in the online
version.

method to achieve good accuracy in the cyclotron and synchrotron
regimes, but the relative errors in the intermediate regime were
between 20 per cent and 30 per cent. In the subsequent works, an
effort has been made to accurately compute the MBS emissivity
over the whole frequency range (for a short review, see e.g. Leung
et al. 2011).

The method we follow consists of first integrating equation (25)
trivially over μα , exploiting the presence of the δ-function. This
is the same first step as employed in Leung et al. (2011), but for
the Lorentz factors γ . Then, from the resonance condition (equa-
tion 24), we find upper and lower boundaries for the summation over
harmonics. To be more precise, if μ = 0, we solve the resonance
condition for μα ,

μα = γ ν − mνb

γ νβμ
= γX − m

γXβμ
, (26)

where X := ν/νb is the frequency of the emitted photon in units
of the gyrofrequency (also known as the harmonic number). The
case μ = 0 can be explicitly avoided by performing a numerical
integration of equation (20) in which none of the quadrature points
falls on zero (see below). Since |μα| < 1, the upper and lower
boundaries for the summation in equation (21) read

m > γX (1 − βμ), (27)

m < γX (1 + βμ). (28)

Since the values of m must be integer, from equations (27) and
(28) we define m+ := �γX (1 + βμ)� and m− := �γX (1 − βμ)�,
obtaining then from equation (25),

Pν(γ ) = 8π3e2νbX 2

c

∫ 1

−1
dμ

(
1

Xβ|μ|
)

×
m+∑

m=m−

[
(μ − βμα)2

1 − μ2
J 2

m(z) + β2(1 − μ2
α)J ′2

m (z)

]
, (29)

where the term in parenthesis before the summation symbol is
|dym/dμα|−1, which comes from the integration of the δ-function.
Note that the value of μα in equation (29) must be replaced by the
relation (26).
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Let us now define the following functions:

I1(X , γ ) :=
∫ 1

−1
dμ

1

Xβ|μ|

×
m+∑

m=m−

[
(μ − βμα)2

1 − μ2
J 2

m(z) + β2(1 − μ2
α)J ′2

m (z)

]
(30)

and

Ĩ2(X , γa, γb) :=
∫ γb

γa

dγ n(γ )X 2I1(X , γ ), (31)

where γ a and γ b are generic input values corresponding to the upper
and lower values of Lorentz factor interval in which the calculation
of equations (30) and (31) will be performed.

In order to compute the emissivity (equation 19), we first calculate
X 2I1(X , γ ) and store it in a two-dimensional array. To minimize the
numerical problems caused by a sharp drop in the power radiated
at low Lorentz factors (keeping X constant), a cut-off array {γ̂min}
is built (see Appendix B). The integration over μ in equation (30)
is performed using a Gauss–Legendre quadrature and considering
the emission to be isotropic. At this stage, the evaluation μ = 0
was avoided by taking an even number of nodal points (specifically,
120 nodes). To complete the array, we compute the Chebyshev
coefficients in the γ direction of X 2I1(X , γ ).

The numerical computation of X 2I1(X , γ ) can be made more
efficient taking advantage of the developments by Schlickeiser &
Lerche (2007, hereafter SL07) in order to simplify the computation
of the pitch-angle averaged synchrotron power of an electron having
Lorentz factor γ , which can be written in the synchrotron limit
(X � 1) as (Crusius & Schlickeiser 1986)

P SL07
ν (γ ) = 1.315 × 10−28νb x CS[x] erg s−1cm−3, (32)

where x := 2X /(3γ 2). Comparing the previous expression to equa-
tion (29) and taking into account equation (19), one obtains for
sufficiently relativistic electrons

x CS[x] ≈ X 2I1(X , γ ). (33)

The function CS[x] is approximated by (SL07)

CS[x] 	 x−2/3

0.869 + x1/3ex
, (34)

which can be computed much faster than the function I1(X , γ ). We
can use this fact to replace the evaluation of the latter function by
the simpler computation of CS[x], where the appropriate conditions
are satisfied. To determine the region of the parameter space (X , γ )
where equation (34) holds with sufficient accuracy, we must con-
sider two restrictions. On the one hand, for the first harmonic, which
sets the lower limit where the emissivity is non-zero, we find that
X1(γ ) = 1/γ . On the other hand, the synchrotron limit (ultrarela-
tivistic limit) happens for γ � 1. For numerical convenience, we
take γ up = 20 as a threshold to use equation (34). For γ > γ up, the
evaluation of I1 slows down dramatically since the number of har-
monic terms needed to accurately compute it (equation 30) rapidly
increases. To show the accuracy of the approximations employed
in the calculation of I1, we consider the following function (see
Appendix A):

RMA[x] :=
{

x CS[x] x > 0.53/γ 3

0 otherwise
, (35)

so that the resulting electron power becomes

P RMA
ν (γ ) = 1.315 × 10−28νb RMA[x] erg s−1cm−3. (36)

In Fig. 1, we show the power radiated by single electrons with
different velocities or, equivalently, Lorentz factors. In the non-
relativistic limit (e.g. for β = 0.2; Fig. 1 violet solid line), the
spectrum is dominated by the first few harmonics (first terms in
the sum of equation 25), which results in a number of discrete
peaks flanked by regions of almost no radiated power. The first
harmonic (m = 1) peaks at X 	 1 (a consequence of the resonance
condition, as mentioned above). As the electron velocity increases
(β = 0.6, 0.9 and γ = 5; Fig. 1 orange, green and blue solid lines,
respectively) the gaps between the peaks of the emitted power are
progressively filled. In addition, the spectrum broadens towards
ever smaller and larger values of X , and an increasing number of
harmonics shows up. At higher Lorentz factors, it makes sense to
compare the continuum synchrotron approximation for the electron
emitting power with the MBS calculation. For that, we display the
cases with γ = 10, 40 and 100 in Fig. 1 with lines coloured in red,
black and brown, respectively. The different line styles of the latter
cases correspond to distinct approximations for the computation of
the MBS power. Solid lines correspond to the numerical evaluation
of equation (25) (the most accurate result). Dashed lines depict the
computation of the synchrotron power as in SL07 (equation 32).
Dotted lines correspond to the emitted power calculated according
to equation (36). The difference between the three approximations
to compute the radiated power decreases as the Lorentz factor in-
creases. Effectively, for γ > γ up, both the exact calculation and
the approximation given by P RMA

ν (γ ) match rather well. Indeed,
the difference becomes fairly small for X � 1. The computation
of the function I1 becomes extremely expensive for large values
of X , because the number of harmonics needed to be taken into
account for the emitted power to be computed accurately enough
increases dramatically. Thus, in the following, we restrict the more
precise numerical evaluation of Pν(γ ) employing I1 (equation 30)
to cases in which X ≤ 100 and γ ≤ γ up. For X > 100, we resort to
P RMA

ν (γ ). We also point to the large quantitative and qualitative ef-
fect of the cut-off in the emitted power resulting from the use of the
RMA[x] function (equation 35) in the evaluation of P RMA

ν (γ ) (equa-
tion 36). This cut-off is in contrast to the non-zero–emitted power
at low frequencies, a characteristic of the synchrotron (continuum)
approximation.

4.2 Numerical evaluation of the emissivity

In this section, we describe how an interpolation table is built and af-
terwards used to compute the emissivity (equation 19) numerically.
We discretize the HD by tessellating it in a large number of Lorentz-
factor intervals whose boundaries we annotate with {γi}M

i=1. Note
that the smallest and largest value of the Lorentz factor tessellation
coincide with the definitions given in equation (18). For numerical
convenience and efficiency, in every interval, we approximate the
EED by a power-law function (with a power-law index qi) since, for
this particular form, it is possible to analytically perform a part of
the calculation, which drastically reduces the computational time.
Then, we use the new interpolation table to compute the emissivity
at arbitrary frequency as described below.

4.2.1 The construction of the interpolation table

Performing a direct numerical integration of equation (31) may
lead to numerical noise in the final result due to the extremely large
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amplitude oscillations of the integrand in the limits X � 1 and γ 	
1. Therefore, assuming a power-law distribution, we reformulated
Ĩ2 in the following manner:

I2(X , q, γi, γi+1; γ th
max) = (

γ th
max

)1−q

×
∫ γi+1/γ th

max

γi /γ
th
max

dξ ξ−qX 2I1

(X , ξγ th
max

)
,

(37)

where q is the index of the power-law approximation to the EED
within the interval [γ i, γ i + 1] and ξ := γ /γ th

max. When calculating
Ĩ2 (equation 31), an integral with this shape suggests the definition
of

I3(ξ,X , q) :=
∫ 1

ξ

dξ̂ ξ̂−qX 2I1

(X , ξ̂γ th
max

)
, (38)

where ξ̂ is an ancillary variable. Rewriting I2 in terms of I3, we get

I2(X , q, γi, γi+1; γ th
max) = (

γ th
max

)1−q

×
[
I3

(
γi

γ th
max

,X , q

)
− I3

(
γi+1

γ th
max

,X , q

)]
.

(39)

We calculate the integral that depends on the three parameters in
equation (38) resorting to a standard Romberg quadrature method
for each value of the triplet (ξ,X , q). In the same manner, as with
equation (30), a three-dimensional array is built for I3(ξ,X , q) with
the Chebyshev coefficients in the ξ direction in order to construct
an interpolation table for I2 (hereafter disTable).

The integral over Lorentz factors was performed for all values
of X and q using a Romberg integration routine. Analogously to Ĩ1

(see Appendix B), the Chebyshev polynomials were constructed in
the ξ direction.

4.2.2 Computation of emissivity using an interpolation table

In terms of I2 (equation 39), the evaluation of the emissivity (equa-
tion 19) in any of the power-law segments in which the original
distribution has been discretized, e.g. extending between γ i and
γ i + 1 and having a power-law index qi, reads

jν = πe2νb

2c
n(γi)γ

qi
i I2

(X , qi , γi , γi+1; γ th
max

)
. (40)

Then, the total emissivity from an arbitrary EED can efficiently
be computed by adding up the contributions from all power-law
segments (see e.g. section 4 in Mimica et al. 2009).

The discretization of disTable in the (X , ξ )-plane is not uni-
form. Many more points are explicitly computed in the regime
corresponding to low electron energies and emission frequencies
than in the rest of the table. In this regime, harmonics dominate
the emissivity and accurate calculations demand a higher density of
tabular points. In the ultrarelativistic regime, the emission is com-
puted also numerically. For that, we resort to the table produced
in MA12 (hereafter uinterp) that includes only the synchrotron
process computed with relative errors smaller than 10−5. Note that
in the ultrarelativistic regime, the errors made by not including the
contribution of the MBS harmonics are negligible. We use both
tables in order to cover a wider range of frequencies and Lorentz
factors than would be possible if only disTable were to be used
(due to the prohibitively expensive calculation for high frequencies
and Lorentz factors). In Fig. 2, we sketch the different regions of the

Figure 2. Illustration of the different regions of theX − ξ space spanned by
the distinct approximations employed to compute the values of emissivity
according to equation (40). Xmin and Xmax are generic values for upper
and lower limits of X for the table disTable and ξmin ≡ γ th

min/γ
th
max. For a

given q, a combination of ξ and X in the blue region means that disTable
is employed. The red area corresponds to the physically forbidden regime
where γ < 1 and, therefore, there is no MBS emission. The thin orange
strap corresponds to the area of low speeds 1 ≤ γ < γ 1 excluded from the
table. A colour version of this figure is available in the online version.

X − ξ space spanned by our method to assemble a single (large)
table. Whenever our calculations require the combination of X and
ξ that falls in the blue region, we employ disTable to evaluate the
emissivity, otherwise we use uinterp. In the particular case when
γi < γ th

max < γi+1, the emissivity is computed using both tables as
follows:

jν = πe2νb

2c
n(γi)γ

qi
i × (

I disTable
2

(X , qi , γi , γ
th
max; γ th

max

)
+ I

uinterp

2

(X , qi , γ
th
max, γi+1; γ th

max

))
. (41)

5 D I FFERENCES BETWEEN MBS AND
S TA N DA R D S Y N C H ROT RO N S P E C T R A

In this section, we show the importance of the introduction of
the new MBS method into our blazar model. We will first show the
differences that arise from using different approximations for the
emission process assuming the same HD with a dominant non-
thermal component (Section 5.1) for each test. In the second test,
we compare the spectra produced by a non-thermally dominated
HD with that of a pure power law extending towards γ 1 	 1 (Sec-
tion 5.2) by computing both MBS and pure synchrotron emission.

For the evolution of the particles injected at shocks, we assume
that the dominant processes are the synchrotron cooling and the
inverse-Compton scattering off the photons produced by the MBS
processes (SSC2). We note that, in many cases, SSC cooling may
be stronger than synchrotron cooling, as we shall see in Section 6.
To compute synthetic time-dependent multiwavelength spectra and
light curves, we include synchrotron and synchrotron self-Compton

2 For simplicity, we keep the abbreviation ‘SSC’ to denote the process
of scattering of the non-thermal emission produced by the local electrons
off those same electrons, but it should be noted that in our model the
seed photons for the inverse-Compton scattering are produced by the (more
general) cyclo-synchrotron emission (Section 4).
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Figure 3. Instantaneous spectra for a model including an HD in which
90 per cent of the particles populate the non-thermal tail of the EED com-
puted employing our new MBS numerical method (full lines), using the
direct numerical integration of RMA[x] function (dotted lines, see equa-
tion 35), and using the direct numerical integration of the Crusius & Schlick-
eiser (1986) function (dot–dashed lines). The dynamical model employed
corresponds to a collision of weakly magnetized shells. A colour version of
this figure is available in the online version.

emission processes resulting from the shocked plasma. We further
consider that the observer’s line of sight makes an angle θ with
the jet axis. A detailed description of how the integration of the
radiative transfer equation along the line of sight is performed can
be found in section 4 of MA12.

5.1 Spectral differences varying the emissivity for a fixed HD

In Fig. 3, we display the instantaneous spectra of a weakly mag-
netized model containing an HD where 90 per cent of the particles
populate the non-thermal tail of the EED (model W-G10-D1.0-
Z09-L1 according to the naming convention of Section 6) taken
at 10, 102, 103, 104 and 105 s after the start of the shell collision.
Solid, dotted and dashed lines show the emission computed using
the full MBS method (Section 4.1) and the direct numerical integra-
tion of the analytic approximations RMA[x] (equation 35) and the
numerical integration of the Crusius & Schlickeiser (1986) function
employed in MA12 and RMA14 (referred hereafter as the standard
synchrotron), respectively. The difference between the first two and
the third is in the presence of a low-frequency cut-off that causes
appreciable differences at early times. The purely synchrotron emis-
sion (dot–dashed lines) always produces an excess of emission with
respect to the other two. This is explained by the fact that there is
always a portion of the EED whose energy is too low for it to be
emitting in the observed frequencies in a more realistic MBS model
(see Fig. 1). The approximate formula RMA[x] performs quite well
and its spectra mostly overlap the MBS ones, except close to the
first turnover in the spectrum (corresponding to the maximum of
the emission from the lowest energy electrons). Despite the pres-
ence of a cut-off in RMA[x], it still overestimates the low-frequency
emission just below the first harmonic, which explains the observed
slight mismatch.

5.2 Spectral differences varying the electron distribution for a
fixed MBS

In the previous section, we have seen that the differences be-
tween the MBS emissivity and the pure synchrotron emissivity are

Figure 4. Comparison between the same hybrid model as in Fig. 3 and
a pure power-law distribution with γ nth

min 	 1. The red lines correspond to
the former model, while the green and blue lines correspond to simulations
with the latter distributions using our MBS numerical method and numerical
integration of Crusius & Schlickeiser (1986), respectively. Dashed and dot–
dashed lines show the synchrotron and SSC spectral contributions to each
of the respective models. Inset: the injected EEDs in each shock. Blue and
dark blue colours correspond to the EED for a pure power-law distribution
injected at the FS and at the RS, respectively. Red and dark red colours cor-
respond to the HD distribution injected at the FS and at the RS, respectively.
A colour version of this figure is available in the online version.

relatively mild if we consider a hybrid, non-thermally dominated
EED. To a large extent, this happens because an HD is flanked by a
monotonically decaying tail at low electron energies (which indeed
goes to zero as the electron Lorentz factor approaches 1, see inset
of Fig. 4). Here, we are interested in outlining the spectral differ-
ences when the lower boundary of the EED is varied. For that, we
consider two different EEDs, namely, a non-thermally dominated
HD (corresponding to model W-G10-D1.0-Z09-L1; see Section 6
for the naming convention) and a pure power-law EED extending
to γ 1 	 1. The rest of the parameters of our model, including the
MBS emissivity are fixed. To set up the pure power-law EED, we
cannot follow exactly the same procedure as outlined in Section 3,
because we must fix γ 1 instead of obtaining it numerically by solv-
ing equation (17). Furthermore, we employ the same non-thermal
normalization factor Q0 for both the pure power-law EED and the
HD.

In Fig. 4, we show the spectral energy distribution correspond-
ing to both the HD and pure power-law EED cases. It is evident
that there are substantial differences at frequencies below the GHz
range and in the infrared-to-X-rays band. On the other hand, the
synchrotron tails above ∼1013 Hz are almost identical for both the
EED and the HD. Correspondingly, the cyclo-synchrotron photons
there produced are inverse-Compton upscattered, forming nearly
identical SSC tails above ∼1020 Hz.

5.3 Spectral differences between MBS and pure synchrotron
for the same power-law distribution

In the previous section, we pointed out how different the SEDs may
result for different distributions. Let us now fix the same injected
power-law EED starting from γ 1 ≈ 1 and evaluate the emissiv-
ities corresponding to MBS and pure synchrotron processes. In
both cases, the SSC is also computed. In Fig. 4, we included the
averaged SED from a simulation with the same configuration, as
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the pure power-law EED model mentioned above but the radiation
treatment was numerical standard synchrotron (green lines). From
1010 to 1022 Hz, the MBS spectrum is quite similar to that of a pure
synchrotron one, so that both emission models are observationally
indistinguishable in the latter broad frequency range. On the other
hand, if we look into the MHz band, we will find what we call the cy-
clotron break, which is the diminishing of the emissivity from each
electron due to the cut-off that happens at frequencies below νb.

6 R ESULTS

In order to assess the impact of the presence of a hybrid distri-
bution composed by thermal and non-thermal electrons, we have
performed a parametric study varying a number of intrinsic prop-
erties of the shells. In the following subsections, we examine the
most important results of our parametric study. In Table 1, we show
the values of the parameters used in this work. Some of them are
fixed in the following and are shown with a single value in Table 1.
Among such parameters, we find the fraction of the internal energy
density of the shocked shell converted into stochastic magnetic field
energy density, εB, the size of the acceleration zone, �acc, and the
number of turns around magnetic field lines in the acceleration zone
that electrons undergo before they cool down, aacc (see MA12, for
further details). The cross-sectional radius and longitudinal size of
the shells are given by the parameters R and �r, respectively.

One of the parameters kept constant in the previous studies is the
total jet luminosity L, which we now vary. We performed a number
of test calculations to compute the lower and upper limits of L that
produce a spectrum qualitatively similar to that of the source Mrk
421 (Krawczynski & Treister 2013). In Table 1, we show the range
of variations of this and other parameters.

Table 1. Model parameters. �R is the Lorentz factor of
the slow shell, �g :=�L/�R − 1 (�L is the Lorentz factor
of the fast shell), σL and σR are the fast and slow shell
magnetizations, εB is the fraction of the internal energy
density at shocks that it is assumed to be converted into
stochastic magnetic field energy density (equation 5),
ζ e and q are the fraction of electrons accelerated into
power-law Lorentz factor (or energy) distribution and its
corresponding power-law index3, �acc and aacc are the
parameters controlling the shock acceleration efficiency
(see section 3.2 of MA12 for details), L, R and �r are
the jet luminosity, jet radius and the initial width of the
shells, z is the redshift of the source and θ is the viewing
angle. Note that �R, �g, σL, σR and ζ e can take any of
the values indicated.

Parameter value

�R 2, 10, 20
�g 1.0, 2.0, 3.0, 5.0
σL 10−6, 10−2, 10−1

σR 10−6, 10−2, 10−1

εB 10−3

ζ e 10−2, 10−1, 0.9
q 2.6
�acc 10
aacc 106

L 1047, 5 × 1047, 5 × 1048 erg s−1

R 3 × 1016 cm
�r 6 × 1013 cm
z 0.031
θ 5◦

To avoid repeated writing of the parameter values when referring
to our models, we introduce a naming scheme in which the mag-
netization is denoted by the letters S, M and W, referring to the
following families of models:

W: weakly magnetized, σ L = 10−6, σ R = 10−6,
M: moderately magnetized, σ L = 10−2, σ R = 10−2, and
S: strongly magnetized, σ L = 10−1, σ R = 10−1.

The remaining four parameters L, �R, �g and ζ e can take any of
the values shown in Table 1. When we refer to a particular model,
we label it by appending values of each of these parameters to the
model letter. For the parameter ζ e, we use Zm2, Zm1 and Z09 to
refer to the values ζ e = 10−2, 10−1 and 0.9, respectively. Similarly,
for the luminosity, we write L1, L5 and L50 to denote the values
1047 erg s−1, 5 × 1047 erg s−1 and 5 × 1048 erg s−1, respectively.
In this notation, W-G10-D1.0-Zm1-L5 corresponds to the weakly
magnetized model with �R = 10 (G10), �g = 1.0 (D1.0), ζ e = 0.1
(Zm1) and L = 5 × 1047 erg s−1 (L5). We perform our parametric
scan for the typical redshift value of Mrk 421, namely z = 0.031.
The viewing angle is fixed to 5◦ in all our models. The SEDs in this
work were computed by averaging over a time interval of 107 s.

6.1 The presence of the non-thermal population

The influence of the parameter ζ e on the blazar emission was ex-
amined in Böttcher & Dermer (2010) and was an essential model
parameter in MA12 and RMA14 as well (though in the latter two
papers it was not varied). In this section, we explore its influence by
studying three different fractions of non-thermal particles: ζ e = 0.9,
0.1, 0.01. In Fig. 5, we show the averaged SEDs of the models with
the aforementioned values of ζ e for the weakly (left-hand panel)
and moderately (right-hand panel) magnetized shells. In both pan-
els, we can appreciate that an EED dominated by non-thermal
particles produces a broader SSC component. The SSC compo-
nent of a thermally dominated EED (W-G10-D1.0-Z09-L5 and
M-G10-D1.0-Z09-L5) displays a steeper synchrotron-SSC valley,
and the modelled blazar becomes γ -rays quiet. The synchrotron
peak frequency νsyn is only very weakly dependent on ζ e. Accord-
ing to their synchrotron peak frequency, these models resemble low
synchrotron peaked blazars (LSP) (Giommi et al. 2012; Giommi,
Padovani & Polenta 2013).

6.2 Magnetization

In Fig. 6, we show the average spectra produced by the IS model
with different combinations of the faster and slower shells magneti-
zations for a fixed EED with ζ e = 0.9. The black, red and blue lines
represent the models with faster shell magnetization σ L = 10−6,
10−2and10−1, respectively. The solid, dotted and dashed lines cor-
respond to a slower shell magnetization σ R = 10−6, 10−2and10−1,
respectively. Consistent with the results in RMA14, the collision
of strongly magnetized shells produces an SSC component dimmer
than the synchrotron component. A double bump outline is re-
produced by the model M-G10-D1.0-Z09-L1 (dashed, red line)
and all the models with σ L = 10−6. For most models, νsyn is
situated at ∼1012 Hz. However, for the cases with σ L = 10−2,
10−1andσ R = 10−2, νsyn ∼ 1013 Hz. In both cases, these frequen-
cies reside in the LSP regime. Remarkably, a change of two orders
of magnitude in σ R results in an increase of � 2 in the observed
flux in models with an EED dominated by non-thermal electrons
(ζ e = 0.9; the left-hand panel in Fig. 6). In the case of models with a
thermally dominated EED (ζ e = 0.1; the right-hand panel in Fig. 6),
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Figure 5. Averaged spectra of the weakly (left-hand panel) and moderately (right-hand panel) magnetized models for ζ e = 0.9, 0.1 and 0.01 in blue, red and
black lines, respectively. Dashed lines show the synchrotron component, while the dot–dashed lines show the SSC component. A colour version of this figure
is available in the online version.

Figure 6. Averaged spectra for different fast shell magnetization, σL, with non-thermal particles population fraction ζ e = 0.9 and 0.1 (left- and right-hand
panels, respectively). The solid, dotted and dashed lines correspond to a magnetization of the slower shell σR = 10−6, 10−2, 10−1, respectively. A colour
version of this figure is available in the online version.

the change in flux under the same variation of the magnetization
of the slower shell is a bit larger, but still by a factor of � 6. In
both cases, the larger differences when changing σ R happen in the
decaying side of the spectrum occurring to the right of either the
synchrotron or the SSC peaks. The variation of the magnetization of
the faster shell yields, as expected (MA12; RMA14) larger spectral
changes, especially in the SSC part of the spectrum.

6.3 Relative Lorentz factor �g

In Fig. 7, we show the variation of the relative Lorentz factor, �g,
for ζ e = 0.1and0.9 (W-G10-D(1.0,. . . ,5.0)-Zm1-L1 and W-G10-
D(1.0,. . . ,5.0)-Z09-L1). The dashed and dot–dashed lines depict
the energy flux coming from the FS and RS, respectively. The
model with �g = 1.0 results from the collision with a fast shell
having �L = 20, whereas the case �g = 5.0 assumes that the fast
shell moves with �L = 60 (i.e. slightly above the upper end of the
Lorentz factor distribution for parsec-scale jets; Lister et al. 2016).
Both panels show that the larger the �g, the higher the SSC bump.
The colliding shells with relative Lorentz factor �g = 5.0 produced
a spectrum with an SSC component one order of magnitude larger

than its synchrotron component. On the other hand, the colliding
shells with relative Lorentz factor �g = 1.0 produced an SSC
component less intense than the synchrotron component. Another
important feature in these spectra is the emergence of a second
bump in the synchrotron component at the near-infrared (∼1014 Hz),
which corresponds to emission coming from the reverse shock. The
effect of changing ζ e at high frequencies is that the larger the non-
thermal population of electrons the broader the SSC component.
Moreover, it can be seen that the forward shock (FS) cannot by itself
reproduce the double bump structure of the SED for blazars and that
the emission coming from the reverse shock (RS) dominates and
clearly shapes the overall spectrum. More specifically, the emission
due to the RS is γ -ray louder than that of the FS.

The inclusion of a thermal population in the EED combined with
a variation of the relative shell Lorentz factor has a potentially
measurable impact on the blazar spectra modelling. If narrower
SSC peaks and a much steeper decay post-maximum are observed,
that could identify the presence of a dominant thermal emission
(Fig. 7; right). The slope of the γ -to-TeV spectrum becomes steeper
and more monotonically decaying, as �g increases for thermally
dominated EEDs.
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Figure 7. Averaged spectra for different relative Lorentz factors and fractions of non-thermal particles. On the left-hand panel, we present the SED from a
particle distribution with ζ e = 0.9 while on the right-hand panel, we show the SED for the same conditions, but with ζ e = 0.1. For the models with �g = 1.0
(black lines) and �g = 5.0 (green lines), the FS and the RS individual contributions are depicted in dashed and dot–dashed lines, respectively. The models
depicted are W-G10-D(1.0,. . . ,5.0)-Z0.9-L1 (left-hand panel) and W-G10-D(1.0,. . . ,5.0)-Zm1-L1 (right-hand panel). A colour version of this figure is
available in the online version.

Figure 8. Averaged spectra for weakly magnetized shells with varying
slower shell bulk Lorentz factor, �R, and two different non-thermal particles
fractions: ζ e = 0.9, 0.1, solid and dashed lines, respectively. A colour version
of this figure is available in the online version.

6.4 Lorentz factor of the slower shell

In Fig. 8, we depict the SEDs resulting from the collision of weakly
magnetized shells with different �R and ζ e. The solid lines corre-
spond to ζ e = 0.9 (models W-G(2,10,20)-D1.0-Z09-L1), while the
dashed lines correspond to ζ e = 0.1 (modelsW-G(2,10,20)-D1.0-
Zm1-L1). The general trend is that the brightness of the source
suffers an attenuation as �R increases, regardless of ζ e. From equa-
tion (1), we can see that an increase of the bulk Lorentz factor
of a shell at constant luminosity implies a lower particle density
number. Therefore, less particles are accelerated at the moment of
the collision, which explains the overall flux decrease as �R in-
creases. Over almost the whole frequency range the brightness of
models depends monotonically on �R, brighter models correspond-
ing to smaller values of �R. However, the relative importance of
the SSC component does not follow a monotonic dependence. At
the lowest value of �R, the SSC component is brighter than the
synchrotron component by one order of magnitude, with a steeper
decay at high frequencies, though. This monotonic behaviour is
only broken in the vicinity of the synchrotron peak when the

Figure 9. Averaged spectra for different jet total luminosity. Solid and
dashed lines display the models with ζ e = 0.9, 0.1, respectively. Different
colour lines correspond to different values of the jet luminosity (see legend).
A colour version of this figure is available in the online version.

beaming cone half-opening angle (∼1/�R) falls below the angle
to the line of sight (θ = 5◦). This explains the larger synchrotron
peak flux when �R = 10 than when �R = 2. In addition, models with
�R = 20 (W-G20-D1.0-Z(09,m1)-L1) suffer a greater attenuation
due to Doppler deboosting (see RMA14). In these models, the half-
opening angle of the beamed radiation is smaller than the observer
viewing angle; therefore, the apparent luminosity decreases.

6.5 Total luminosity

The number of particles accelerated by the ISs is an important
quantity in our treatment of EEDs. The number of particles in each
shell is dictated by equation (1). Such a direct influence of the
luminosity on the number of particles motivates us to study the
behaviour of the SEDs when this parameter is changed. In Fig. 9,
we show the SEDs produced by the IS model with different total
jet luminosities and values of ζ e (models W-G10-D1.0-Z(09,m1)-
L(1,5,50)). With solid and dashed lines, we differentiate the HDs
with ζ e = 0.9, 0.1, respectively, and in black, red and blue the
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Figure 10. Dependence of the electron temperature on shell magnetization.
The top and bottom panels show the behaviour of �e in the FS and RS,
respectively. Contour lines of selected temperatures are overlaid in both
panels. A colour version of this figure is available in the online version.

luminosities L = 1047, 5 × 1047, 5 × 1048, respectively. The in-
crease in flux of the thermally or non-thermally dominated cases is
rather similar and follows the expectations. An increase by 50 in the
total luminosity L implies an overall increase of 100 in the particle
density according to equation (1). Hence, the expected increase in
flux in the synchrotron component is proportional to ni ∼ 100, while
in the SSC component it is proportional to n2

i ∼ 104.

7 T E M P E R ATU R E V E R S U S M AG N E T I Z AT I O N

The fluid temperature χ is calculated by the exact Riemann solver
for each shell collision. Assuming that the jet is composed of pro-
tons and electrons, the temperature of the electrons in the plasma
is �e = χmp/me, where mp is the mass of proton. In order to
systematically explore the dependence of the temperature on the
properties of the shells, we solved a large number of Riemann prob-
lems for different magnetizations and relative Lorentz factor. Here,
we present the behaviour of �e in the ISs model in order to obtain
insight into the temperature of the thermal component of the EED in
the shocks. In Fig. 10, we show the value of �e as a function of the
magnetizations σ Landσ R for both FS and RS (left- and right-hand
panels, respectively).

The hottest region of the RS plane (σ L < 1 and σ R > 0.1) cor-
responds to the coldest region in the FS plane. Indeed, comparing
both figures we observe that the RS is hotter than that of the FS
wherever σ L � 0.2 or σ R > 0.1. As a result, in most of the mod-
erately and weakly magnetized models, the radiation produced by
the population of injected electrons that are thermally dominated

Figure 11. Temperature as a function of the relative Lorentz factor. In this
figure, we show the temperature of both forward (full lines) and reverse
(dashed lines) shocks for the weakly (red lines) and moderately (black
lines) magnetized models. The slower shell bulk Lorentz factor for both
magnetization is �R = 10. A colour version of this figure is available in the
online version.

could come from the RS. However, for σ R � 0.2 and σ L � 0.2 the
opposite true: the FS is hotter than that of the RS.

In Fig. 11, we show the behaviour of the electron temperature
�e in terms of the relative Lorentz factor �g between the colliding
shells for the FS and RS. In accordance with Fig. 10, the reverse
shock is hotter than that of the forward shock. As the relative Lorentz
factor �g grows, the temperature of the reverse shock tends to grow
while the forward shock seems to be approaching asymptotically
to a value, which depends slightly on the magnetization (the larger
the magnetization the smaller the asymptotic temperature). Values
�g > 5 are inconsistent with the blazar scenario, for a fixed value
�R = 10, since they would imply that the faster shell was moving
at �L > 60 (in excess of the maximum values of the Lorentz factor
for the bulk motion inferred for blazars).

From Figs 10 and 11, we can infer that �e does not only depend
on the velocity of the fluid but also on its magnetization. Therefore,
we conclude that this degeneracy makes the determination of �e a
very difficult task.

8 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we introduce a hybrid thermal–non-thermal electron
distribution into the IS model for blazars. To account for the fact
that the thermal component of the HD extends to very low elec-
tron Lorentz factors, we also introduce a cyclo-synchrotron code
that enables us to compute the non-thermal emission from electrons
with arbitrary Lorentz factor. We show that our method for treating
the temporal evolution of the HD and the calculation of MBS emis-
sion can be performed efficiently and with sufficient accuracy. The
method is implemented as a generalization of the numerical code
of MA12.

To test the influence of the fraction of non-thermal particles ζ e in
the overall HD, we apply the new method to the case of a blazar with
L = 1047 erg s−1 (Fig. 5). Considering only MBS and SSC emission
processes, we see that increasing ζ e (i.e. the distribution becoming
more non-thermal) has as a consequence a shallower valley between
the two spectral peaks, while the SSC emission extends to higher
energies. In other words, an HD of mostly thermal particles emits
only up to MeV (except when �g ∼ 5; see Fig. 7). This would mean
that the emission in the GeV range for the thermally dominated HD
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cannot come from the SSC and would have to be produced by the
EIC (not considered here). Furthermore, Fig. 5 confirms that also
for low ζ e highly magnetized blazar jets seem to be observationally
excluded because their SSC peak is too dim.

Another effect of decreasing ζ e is the shift of the SSC peak to
lower frequencies and the narrowing of the high-frequency spectral
bump, while at the same time the synchrotron peak and flux do
not change appreciably. This means that (excluding possible effects
from varying EIC) the Compton dominance (ratio of internal Comp-
ton and cyclosynchrotron luminosity) can be changed by varying
ζ e, while the peak MBS frequency remains constant. In other words,
for all other parameters remaining constant, the variations in ζ e may
explain the vertical scatter in the distribution of FSRQs and BL Lacs
in the peak synchrotron frequency–Compton dominance parameter
space (see e.g. fig. 5 in Finke 2013). Changing ζ e appears to not be
able to change the blazar class.

Regarding the variations of the shell magnetization (Section 6.2),
relative Lorentz factor (Section 6.3) and the bulk Lorentz factor
(Section 6.4), the results are consistent with those of RMA14. In
this work, we performed a more detailed study of the influence of the
magnetization than in the previous paper since now we study nine
possible combinations of faster and slower shell magnetizations,
instead of only three in RMA14. The truly novel result of this work
is that the RMA14 trend generally holds for the thermally dominated
HD as well (right-hand panel in Fig. 6), with the difference that the
collision of (σ L = 0.1, σ R = 0.1) shells produces a double-peaked
spectrum for ζ e = 0.1, while its non-thermally dominated equivalent
does not (blue dashed lines in Fig. 6). Even so, the SSC component
remains very dim for very magnetized shells.

Regarding �g, the RS emission (dot–dashed lines in Fig. 7) is
crucial for reproducing the blazar spectrum. Therefore, in the case
of ζ e � 1, the temperature of the RS is one of the most important
parameters. Since this temperature increases with �g (Fig. 11), the
effect of �g on the MBS and the SSC peak frequencies and fluxes is
qualitatively similar to that of the non-thermal electron distribution
(Fig. 7; see also RMA14). The changes induced by variations of �R

(Fig. 8) are independent of the thermal/non-thermal EED content
and agree with RMA14. The effects of the increase in total jet
luminosity are visible for both ζ e = 0.1 and ζ e = 0.9. Varying the
luminosity by a factor of 50 increases the MBS flux by ∼102 and
the SSC flux by ∼104. The relation between spectral components is
very similar to the variations of �R, i.e. the increase in L is similar
to a decrease in �R.

Overall, we show that the inclusion of the full cyclo-synchrotron
treatment, motivated by the significant low-energy component of
the HD, has a moderate effect on the blazar spectrum at optical-
to-γ -ray frequencies. However, at lower frequencies (e.g. below
1 GHz) where the self-absorption may play a role, the differences
between the synchrotron and the MBS will be more severe. We plan
to include the effect of absorption in a future work as well as the
effects by EIC emission.
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A P P E N D I X A : T H E R M A FU N C T I O N

The formula for the pitch-angle averaged synchrotron power of
a single ultrarelativistic electron was derived in e.g. Crusius &
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Figure A1. The relative error between emissivity for a power-law distribution of electrons computed from the MBS interpolation tables and performing
numerical integration of the RMA function. Each of the different colours represent cases with different power-law indices, q, of the non-thermal EED. In the
left- and right-hand panels, we show the relative error considering a = 0.8 and a = 1 in equation (A1), respectively. A colour version of this figure is available
in the online version.

Schlickeiser (1986) and afterwards, an accurate approximation of it
was discovered by Schlickeiser & Lerche (2007). Both expressions
assume a continuum spectrum for all γ , so that they cannot be ap-
plied directly to the calculation of the discrete low-frequency, low-γ
cyclotron emission. In particular, these formulae do not take into ac-
count the fact that for slow electrons there is no emission below the
gyrofrequency νb. Nevertheless, the expression in Schlickeiser &
Lerche (2007) is analytic, which makes it very convenient for a fast
numerical implementation. We use the equation (16) in Schlickeiser
& Lerche (2007) to define the function4

RMA[x] :=
{

x CS[x] x > 2a/(3γ 3)

0 otherwise
, (A1)

where a is a numerical constant. The location of the cut-off, i.e. the
value of a in equation (A1), is very important. In Fig. A1, we show
the relative error of the emissivity using RMA[x] compared to full
MBS treatment. We assume a pure power-law distribution of elec-
trons with different power-law indices and use two different values
of the cut-off constant: a = 0.8 and a = 1. The magnetic field for this
test was B = 10 G and the minimum and maximum Lorentz factors
γ nth

min = 5, γ nth
max = 500, respectively. At low frequencies, the errors

are large because there the emission is dominated by harmonics
and is thus not well represented by a continuous RMA[x] function.
Nevertheless, choosing an appropriate value for a can decrease the
errors in that region from ∼350 per cent (a = 1, right-hand panel)
to ∼25 per cent (a = 0.8, left-hand panel). The relative error of the
cases with power-law indices q < 0 are always below 1, and is
somewhat lower for a = 1 than for a = 0.8. However, since we
want the relative error to be the lowest for all power-law indices,
we choose the cut-off constant a = 0.8.

4 In the process of looking for a good analytical approximation to CS[x],
we tried to generalize the approach made by SL07 by fitting the numerical
data with C̃S[x] = x−a/(b + xcex ). We found, nevertheless, that the quality
of the approximation of SL07 to CS86 was, indeed, good enough for our
purposes. However, it has been shown by Finke, Dermer & Böttcher (2008)
that a piece-wise approach may lead to better fits. As a future work, we will
try to improve the RMA function testing the piece-wise approach of Finke
et al. (2008).

A P P E N D I X B : T H E X 2 I1 I N T E R P O L AT I O N
TA BLE

The interpolation table of Ĩ1(γ,X ) := X 2I1(X , γ ) was built inte-
grating equation (30) using the Gauss–Legendre quadrature with
120 nodal points for values of γ ≤ 20 and X < 104. The numeri-
cal calculations of the Bessel functions were performed using the
tool my_Bessel_J developed in Leung et al. (2011). Comput-
ing Ĩ1(γ,X ) for γ and X outside this region is computationally
challenging. Fortunately, in the ultrarelativistic regime, we can ap-
proximate Ĩ1(γ,X ) using the RMA function (see Appendix A). In
the γ direction, Ĩ1 is approximated using Chebyshev interpolation
(for each X separately).

Special care has to be devoted to the zero emission regions below
X1(γ ) and above X = 100 (light blue triangular zones in Fig. B1),
since including those regions can cause a bad numerical behaviour
of Chebyshev interpolation. In order to avoid this, we constructed
a Lorentz factors array {γ̂min(X )} containing the minimum Lorentz
factor above which the emission is non-negligible for every value of

Figure B1. X 2I1 as a function of X and γ . The emission is zero in the
light blue region. We also note that for arbitrary γ there is a sufficiently low
X so that the emission is in the form of harmonics. A colour version of this
figure is available in the online version.
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Figure B2. Similar to Fig. 1 but for a fixed X . The black and red lines
depict the radiated power for X < X1. The break at low γ is set by hand
considering the cut-off criteria described in Appendix A. The blue and
green lines correspond to X1 ≤ X < 100. The orange and magenta lines
correspond to X ≥ 100. A colour version of this figure is available in the
online version.

X ; i.e. {γ̂min(X )} is a set of lower interval limits for the Chebyshev
interpolation (instead of γ = 1).

B1 Minimum Lorentz factors for X < X1

Numerical calculations of the cyclo-synchrotron radiated power
show that the frequency of the first harmonic behaves as X1(γ ) =
1/γ . In Appendix A, we show the cut-off criterion chosen to include
as much power radiated as possible while avoiding the zero emission
frequencies belowX1(γ ). We follow a similar procedure to construct
the array {γ̂min(X )}; i.e. γ̂min(X ) = 0.8/X .

B2 Minimum Lorentz factors for X ≥ 100

Finding γ̂min(X ) for this side of the spectrum requires of a two-step
procedure:

(i) For every X , the bisection method was employed to find the
value of γ at which Ĩ1 is well below its maximum value.

(ii) A linear fit (in logarithmic space) was performed with the
values of γ found in the previous step.

We used the formula obtained from the fit to estimate the values
of γ̂min(X ) in this region.

Figure B3. Similar to Fig. B1 but showing the relative error between the
data obtained using numerical integration and the values interpolated from
the table. The resolution of the plot is 1024 × 1024 points. A colour version
of this figure is available in the online version.

B3 Minimum Lorentz factors for X1 ≤ X < 100

Our calculations showed that in the region where 1 ≤ X < 100
there is practically no zero radiation region in the γ direction (see
Fig. B1). Since this region is above the first harmonic X1, neither
the criterion used in Appendix B1 nor the bisection procedure em-
ployed in Appendix B2 can be used here, since the profile of Ĩ1 is too
steep at γ ∼ 1 (see Fig. B2). Applying a bisection method leads to
an oscillating γ̂min(X ), which produces numerical problems when
interpolating from the table. We verified that a constant Lorentz
factor minimum threshold close to 1 produces good results in this
region. Thus, we employ the input parameter γ th

min for this purpose.
Normally, we use the numerical value γ th

min ≈ 1.005 037 815 that
corresponds to the Lorentz factor of a particle with β = 0.1. The
exact value γ = 1 cannot be used as threshold because it corre-
sponds to β = 0, causing problems in, e.g., the resonance condition
(equation 24) and the subsequent equations.

B4 Calculation of X 2 I1(X , γ ) using the interpolation table

The usage of Ĩ1 requires a two-step procedure: (1) Chebyshev inter-
polation from the Chebyshev coefficients in the γ direction and (2)
a linear interpolation in the X direction using the values obtained
in the first step. The accuracy of the reconstruction routine can be
seen in Fig. B3. The test was performed on a grid of 1024 × 1024.
The relative error in most of the points is � 1 per cent.
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