2,614 research outputs found

    On the influence of a hybrid thermal-non-thermal distribution in the internal shocks model for blazars

    Get PDF
    Internal shocks occurring in blazars may accelerate both thermal and non-thermal electrons. While the non-thermal tail fills the higher end of the electron energy distribution (EED), thermal electrons populate the lowest energies of the shock-accelerated particles. In this paper, we examine the consequences that such a hybrid (thermal-non-thermal) EED has on the spectrum of blazars. Since the thermal component of the EED may extend to very low energies, the synchrotron emission of ultrarelativistic electrons may not be sufficiently accurate to compute blazar spectra. Thus, we replace the standard synchrotron process by the more general magneto-bremsstrahlung (MBS) mechanism encompassing the discrete emission of harmonics in the cyclotron regime, the transition from the discrete to continuum and the continuum emission in the synchrotron realm. In the γ-ray band, an EED of mostly thermal particles displays significant differences with respect to the one dominated by non-thermal particles. A thermally dominated EED produces a synchrotron self-Compton (SSC) peak extending only up to a few MeV, and the valley separating the MBS and the SSC peaks is much deeper than if the EED is dominated by non-thermal particles. The combination of these effects modifies the Compton dominance of a blazar, suggesting that the vertical scatter in the distribution of FSRQs and BL Lacs in the peak synchrotron frequency-Compton dominance parameter space could be attributed to different proportions of thermal/non-thermal particles in the EED of blazars

    Comprehensive transient-state study for CARMENES-NIR high thermal stability

    Full text link
    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. As a first approach, the thermal stability has been limited to \pm 0.01K (within year period) over a working temperature of 243K. This can be achieved by means of several temperature-controlled rooms. The options considered to minimise the complexity of the thermal design are here presented, as well as the transient-state thermal analyses realised to make the best choice

    Applied Radiation and Isotopes Monte Carlo Verification of Output Correction Factors for a TrueBeam STx linac

    Get PDF
    The recent publication of the new code of practice IEAA/AAPM TRS-483 introduces the use of output correction factors to correct the changes in detector response in relative dosimetry of small photon beams. In TRS-483, average correction factors are reported for several detectors at 6 and 10 MV with and without attening. These correction factors were determined by Monte Carlo simulation or experimental measurements using several linacs of di erent brands and vendors. The goal of this work was to validate the output correction factors reported in TRS-483 for a 6 MV (with and without attening lter) of a TrueBeam STx® linac with Monte Carlo simulation for four radiation detectors employed in the dosimetry of small photon beams and whose output correction factors were determined using di erent radiation source than TrueBeam STx®: PTW®31010, PTW®31016, IBA®CC-01, and IBA®SFD. The results show that Monte Carlo calculated output factors, and those reported in the code of practice TRS-483 fully agree within 1%. The use of generic correction factors for a TrueBeam STx® and the detectors studied in this work is adequate for small dosimetry static beams within the uncertainties of Monte Carlo calculations and output correction factors reported in TRS-483. Key words: TRS-483, Monte Carlo simulation, output correction factors, detector model, Phase Space File, Latent Varianc

    Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S

    Full text link
    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in 38S and 40S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed 40S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR

    Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams

    Get PDF
    The shell structure underlying shape changes in neutron-rich nuclei between N=20 and N=28 has been investigated by a novel application of the transient field technique to measure the first-excited state g factors in S-38 and S-40 produced as fast radioactive beams. Details of the new methodology are presented. In both S-38 and S-40 there is a fine balance between the proton and neutron contributions to the magnetic moments. Shell model calculations which describe the level schemes and quadrupole properties of these nuclei also give a satisfactory explanation of the g factors. In S-38 the g factor is extremely sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap as occupation of this orbit strongly affects the proton configuration. The g factor of deformed S-40 does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review

    Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs

    Get PDF
    This research was mainly funded by the Spanish Government through the IBERYCA project (CGL2017-84723-P) and its associated FPI scholarship BES-2014-067971 (to M.E.-V.). It was further supported by the BC3 María de Maeztu excellence accreditation (MDM-2017-0714; the Spanish Government) and by the BERC 2018-2021 and the UPV/EHU-GV IT-1018-16 program (Basque Government). Additionally, this research was further supported through the ‘Juan de la Cierva program’ (the Spanish Government to M.V.; (IJCI-2017-34640).) and two projects funded by the Romanian Ministry of Education and Research through UEFISCDI (NATIvE, PN-III-P1-1.1-PD- 2016-0583 and REASONING, PN-III-P1-1.1-TE-2019-1099 to A.-M.H.)

    Z=50 shell gap near 100^{100}Sn from intermediate-energy Coulomb excitations in even-mass 106−−112^{106--112}Sn isotopes

    Full text link
    Rare isotope beams of neutron-deficient 106,108,110^{106,108,110}Sn nuclei from the fragmentation of 124^{124}Xe were employed in an intermediate-energy Coulomb excitation experiment yielding B(E2,01+→21+)B(E2, 0^+_1 \to 2^+_1) transition strengths. The results indicate that these B(E2,01+→21+)B(E2,0^+_1 \to 2^+_1) values are much larger than predicted by current state-of-the-art shell model calculations. This discrepancy can be explained if protons from within the Z = 50 shell are contributing to the structure of low-energy excited states in this region. Such contributions imply a breaking of the doubly-magic 100^{100}Sn core in the light Sn isotopes.Comment: 4 pages, 4 figure
    • …
    corecore