10 research outputs found

    Partioning of dietary energy of chickens fed maize or wheat-based diets with and without a commercial blend of phytogenic feed additives

    Get PDF
    The aim of the study was to investigate the effects of a standardized mixture of a commercial blend of phytogenic feed additives containing 5% carvacrol, 3% cinnamaldehyde, and 2% capsicum on utilization of dietary energy and performance in broiler chickens. Four experimental diets were offered to the birds from 7 to 21 d of age. These included 2 basal control diets based on either wheat or maize that contained 215 g CP/kg and 12.13 MJ/kg ME and another 2 diets using the basal control diets supplemented with the plant extracts combination at 100 mg/kg diet. Each diet was fed to 16 individually penned birds following randomization. Dietary plant extracts improved feed intake and weight gain (P 0.05) but improved (P < 0.05) dietary NE by reducing the heat increment (P < 0.05) per kilogram feed intake. Feeding phytogenics improved (P < 0.05) total carcass energy retention and the efficiency of dietary ME for carcass energy retention. The number of interactions between type of diet and supplementary phytogenic feed additive suggest that the chemical composition and the energy to protein ratio of the diet may influence the efficiency of phytogenics when fed to chickens. The experiment showed that although supplementary phytogenic additives did not affect dietary ME, they caused a significant improvement in the utilization of dietary energy for carcass energy retention but this did not always relate to growth performance

    Dietary xylanase increases hepatic vitamin E concentration of chickens fed wheat based diet

    Get PDF
    The study examined the effect of xylanase supplementation on apparent metabolizable energy (AME) and hepatic vitamin E and carotenoids in broiler chickens fed wheat based diets. A total of one hundred forty four male Ross 308 chickens were used in this study. Birds were randomly assigned to 3 dietary treatments (8 cages per treatment of 6 male broilers each) for 14 days from 7 to 21 day old. The control treatment was based on wheat-soyabean meal and was either unsupplemented or supplemented with either 1000 or 2000 xylanase units per kg diet. Orthogonal polynomial contrasts were used to test linear response to dietary xylanase activity. There was a positive linear relationship (P < 0.05) between dietary AME and doses of supplementary xylanase. A linear relationship (P < 0.05) was also observed between dosage of xylanase supplementation and hepatic vitamin E concentration and retention. In conclusion, xylanase supplementation improved dietary AME and increased hepatic vitamin E concentration which may have positive effects on the antioxidative status of the birds

    Modificación del nivel y tipo de fibra en piensos de cerdos mediante la inclusión de subproductos agroindustriales sobre las características del purín y su potencial de producción de amoniaco, biogás y metano (resultados preliminares)

    Get PDF
    La alimentación de los animales se considera una vía importante de mitigación de la emisión de gases contaminantes a la atmósfera, principalmente amoniaco (NH3) y metano (CH4), (BREF, 2006). La incorporación de fuentes de fibra fácilmente fermentable poco lignificada en piensos es capaz de modificar el comportamiento fermentativo de las bacterias en el intestino grueso y el balance entre el nitrógeno (N) orgánico e inorgánico y el pH de las deyecciones (Portejoie y col., 2004; Jarret y col., 2011). Este efecto, que no altera la excreción total de N puede condicionar considerablemente a la emisión de NH3. Por otro lado, el efecto de la inclusión de fuentes de fibra en la dieta sobre las emisiones de CH4 ha sido menos estudiado. Algunos estudios sugieren que un incremento de la cantidad de fibra en los piensos puede aumentar la producción de CH4 por cerdo y día (Jarret y col., 2011) al reducir la digestibilidad de los nutrientes e incrementar la cantidad de materia orgánica no digerida en las heces. El objetivo del presente estudio es evaluar los efectos de las variaciones en el nivel y tipo de fibra (fermentable y no fermentable) de los piensos sobre las características del purín y las emisiones de NH3,CH4 y Biogás

    The effect of slurry composition on methane potential emissions from fattening pig slurries: a review of three nutrition assays

    Get PDF
    This study reviews the effects of pig slurry composition on the biochemical methane (CH4) potential (B0), using the information collected in three nutrition assays. A total of 84 animals were used to test the effect of 13 different diets

    Animal feeding strategies to reduce N2O and NH3 emission from surface-applied pig slurry to a grassland soil.

    Full text link
    It is estimated that N losses from fertilized crops range between 50-70%, depending on management practices, climate and soil conditions. Ammonia (NH3) emissions following land application of animal manures give rise to a significant proportion of the total NH3 emissions from agricultural sources

    Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Get PDF
    [EN] This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2 above 0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production.This research was supported by the Spanish Ministerio de Ciencia e Innovacion (project AGL2011-30023) and the Valencian Government (Project ACOMP/2013/118).Beccaccia, A.; Ferrer Riera, P.; Ibáñez, MÁ.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, CD.... (2015). Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Spanish Journal of Agricultural Research. 13(1):1-15. https://doi.org/10.5424/sjar/2015131-6575S115131Aarnink, A. J. A., & Verstegen, M. W. A. (2007). Nutrition, key factor to reduce environmental load from pig production. Livestock Science, 109(1-3), 194-203. doi:10.1016/j.livsci.2007.01.112Alvarez-Rodriguez, J., Hermida, B., Parera, J., Morazán, H., Balcells, J., & Babot, D. (2013). The influence of drinker device on water use and fertiliser value of slurry from growing-finishing pigs. Animal Production Science, 53(4), 328. doi:10.1071/an12136Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3AOAC, 2000. Official methods of analysis, 15th ed. (Harwitte W, Ed.). Association of Official Analytical Chemists. Washington, USA.APHA, 2005. Standard methods for the examination of water and wastewater. Centennial Edition, Baltimore, MD, USA.Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5), 772-777. doi:10.1366/0003702894202201Bietresato, M., & Sartori, L. (2013). Technical aspects concerning the detection of animal waste nutrient content via its electrical characteristics. Bioresource Technology, 132, 127-136. doi:10.1016/j.biortech.2012.12.184Bindelle, J., Buldgen, A., Delacollette, M., Wavreille, J., Agneessens, R., Destain, J. P., & Leterme, P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria123. Journal of Animal Science, 87(2), 583-593. doi:10.2527/jas.2007-0717Box GEP, Cox DR, 1964. An analysis of transformations. J R Stat Soc B 26: 211-246.Canh TT, Verstegen MWA, Aarnink AJA, Schrama JW, 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and faeces of fattening pigs. J Anim Sci 75: 700-706.Canh, T. ., Aarnink, A. J. ., Schutte, J. ., Sutton, A., Langhout, D. ., & Verstegen, M. W. . (1998). Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livestock Production Science, 56(3), 181-191. doi:10.1016/s0301-6226(98)00156-0Chen, L., Xing, L., Han, L., & Yang, Z. (2009). Evaluation of physicochemical models for rapidly estimating pig manure nutrient content. Biosystems Engineering, 103(3), 313-320. doi:10.1016/j.biosystemseng.2009.04.007Conn, K. L., Topp, E., & Lazarovits, G. (2007). Factors Influencing the Concentration of Volatile Fatty Acids, Ammonia, and Other Nutrients in Stored Liquid Pig Manure. Journal of Environment Quality, 36(2), 440. doi:10.2134/jeq2006.0222Dinuccio, E., Berg, W., & Balsari, P. (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448-2459. doi:10.1016/j.atmosenv.2007.12.022Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., & Cacho Rivero, J. A. (2013). Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresource Technology, 128, 252-258. doi:10.1016/j.biortech.2012.10.044FEDNA, 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3rd ed. (de Blas C, Mateos GG, García-Rebollar P, Eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain, 502 pp.Galassi, G., Colombini, S., Malagutti, L., Crovetto, G. M., & Rapetti, L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Animal Feed Science and Technology, 161(3-4), 140-148. doi:10.1016/j.anifeedsci.2010.08.009Halas, D., Hansen, C. F., Hampson, D. J., Kim, J.-C., Mullan, B. P., Wilson, R. H., & Pluske, J. R. (2010). Effects of benzoic acid and inulin on ammonia–nitrogen excretion, plasma urea levels, and the pH in faeces and urine of weaner pigs. Livestock Science, 134(1-3), 243-245. doi:10.1016/j.livsci.2010.06.153Hayes, E. ., Leek, A. B. ., Curran, T. ., Dodd, V. ., Carton, O. ., Beattie, V. ., & O’Doherty, J. . (2004). The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresource Technology, 91(3), 309-315. doi:10.1016/s0960-8524(03)00184-6Hernández, F., Martínez, S., López, C., Megías, M. D., López, M., & Madrid, J. (2011). Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal, 5(8), 1290-1298. doi:10.1017/s1751731111000115Huang, G., Han, L., & Liu, X. (2007). Rapid Estimation of the Composition of Animal Manure Compost by near Infrared Reflectance Spectroscopy. Journal of Near Infrared Spectroscopy, 15(6), 387-394. doi:10.1255/jnirs.745Jarret, G., Cerisuelo, A., Peu, P., Martinez, J., & Dourmad, J.-Y. (2012). Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agriculture, Ecosystems & Environment, 160, 51-58. doi:10.1016/j.agee.2011.05.029Jørgensen, H. (2007). Methane emission by growing pigs and adult sows as influenced by fermentation. Livestock Science, 109(1-3), 216-219. doi:10.1016/j.livsci.2007.01.142Jouany JP, 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2: 131-144.Kerr BJ, Ziemer SL, Trabue SL, Crouse JD, Parkin TB, 2006. Manure composition of swine as affected by dietary protein and cellulose concentrations. J Anim Sci 84: 1584-1592.Kreuzer, M., Wittmann, M., Gerdemann, M. M., Hanneken, H., Abel, H., & Machmuller, A. (1999). Re-examination of the metabolizable energy contents of various rations containing different types and levels of bacterially fermentable substrates in digestibility experiments with growing pigs. Journal of Animal Physiology and Animal Nutrition, 82(1), 33-49. doi:10.1046/j.1439-0396.1999.00218.xLicitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi:10.1016/0377-8401(95)00837-3Liu, Z., Powers, W., & Liu, H. (2013). Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis1. Journal of Animal Science, 91(8), 4017-4032. doi:10.2527/jas.2012-6147Malley, D. F., Yesmin, L., & Eilers, R. G. (2002). Rapid Analysis of Hog Manure and Manure-amended Soils Using Near-infrared Spectroscopy. Soil Science Society of America Journal, 66(5), 1677. doi:10.2136/sssaj2002.1677Martinez-Suller L, Provolo G, Carton OT, Brennan D, Kirwan L, Richards KG, 2010. The composition of dirty water on dairy farms in Ireland. Irish J Agr Food Res 49: 67-80.Mertens DR, 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J AOAC Int 85: 1217-1240.Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26(5), 485-495. doi:10.1016/j.biombioe.2003.08.008Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological Degradation and Greenhouse Gas Emissions during Pre-Storage of Liquid Animal Manure. Journal of Environment Quality, 33(1), 27. doi:10.2134/jeq2004.2700Montalvo, G., Morales, J., Pineiro, C., Godbout, S., & Bigeriego, M. (2013). Effect of different dietary strategies on gas emissions and growth performance in post- weaned piglets. Spanish Journal of Agricultural Research, 11(4), 1016. doi:10.5424/sjar/2013114-3185Moral, R., Perez-Murcia, M. D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C., & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 28(2), 367-371. doi:10.1016/j.wasman.2007.01.009Pereira, J., Misselbrook, T. H., Chadwick, D. R., Coutinho, J., & Trindade, H. (2012). Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosystems Engineering, 112(2), 138-150. doi:10.1016/j.biosystemseng.2012.03.011Portejoie, S., Dourmad, J. Y., Martinez, J., & Lebreton, Y. (2004). Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science, 91(1-2), 45-55. doi:10.1016/j.livprodsci.2004.06.013Reeves, J. B. (2007). The present status of «quick tests» for on-farm analysis with emphasis on manures and soil: What is available and what is lacking? Livestock Science, 112(3), 224-231. doi:10.1016/j.livsci.2007.09.009Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117-1123. doi:10.1016/j.biortech.2004.10.002Shenk JS, Westerhaus MO, 1996. Calibration of ISI way. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 198-202.Snoek, D. J. W., Stigter, J. D., Ogink, N. W. M., & Groot Koerkamp, P. W. G. (2014). Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosystems Engineering, 121, 12-24. doi:10.1016/j.biosystemseng.2014.02.003Soares, M., & Lopez-Bote, C. . (2002). Effects of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 95(3-4), 169-177. doi:10.1016/s0377-8401(01)00324-8Sørensen, L. K., Sørensen, P., & Birkmose, T. S. (2007). Application of Reflectance Near Infrared Spectroscopy for Animal Slurry Analyses. Soil Science Society of America Journal, 71(4), 1398. doi:10.2136/sssaj2006.330Tamminga, S. (2003). Pollution due to nutrient losses and its control in European animal production. Livestock Production Science, 84(2), 101-111. doi:10.1016/j.livprodsci.2003.09.008Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026Triolo, J. M., Ward, A. J., Pedersen, L., Løkke, M. M., Qu, H., & Sommer, S. G. (2014). Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Applied Energy, 116, 52-57. doi:10.1016/j.apenergy.2013.11.006Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2Van Soest PJ, 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell Univ Press, USA, 476 pp.Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043Von Heimendahl, E., Breves, G., & Abel, H. (2010). Fiber-related digestive processes in three different breeds of pigs12. Journal of Animal Science, 88(3), 972-981. doi:10.2527/jas.2009-2370Williams PC, Sobering D, 1996. How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 185-188.Williams PC, 2001. Implementation of near-infrared technology. In: Near-infrared technology in the agricultural and food industries, 2nd ed (Williams PC, Norris K, Eds.). Am Assoc Cereal Chemists Inc., St. Paul, MN, USA, pp: 145-169.Yagüe, M. R., Bosch-Serra, À. D., & Boixadera, J. (2012). Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosystems Engineering, 111(2), 206-216. doi:10.1016/j.biosystemseng.2011.11.013W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, & J. Hattey. (2005). APPLICATION OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF NUTRIENT CONTENTS IN LIQUID AND SOLID MANURES. Transactions of the ASAE, 48(5), 1911-1918. doi:10.13031/2013.2000

    Effect of enzyme complex (carbohydrase and Phytase) in laying hens diets

    No full text
    O presente experimento foi conduzido para avaliar o uso de enzimas fitase e carbohidrolase em dietas a base de milho e soja com ou sem alta concentração de fibras no desempenho produtivo e qualidade dos ovos (gravidade especifica (GE), unidade haugh (UH), espessura da casca (EC) e peso da casca (PC) de galinhas poedeiras. Foram utilizadas 320 poedeiras da linhagem comercial Hissex White, com idade inicial de 44 semanas. As aves foram alimentadas com quatro diferentes tratamentos (10 repetições de 8 cada) durante 10 semanas. As dietas incluíam: controle (T-1) a base de milho e soja com baixa concentração de fibras; (T-2) a base de milho e soja com alta concentração de fibras; (T-3) a base de milho e soja com adição do complexo enzimático e (T-4) a base de milho e soja com adição do complexo enzimático e alta concentração de fibras. As galinhas alimentadas com a dieta controle, apresentaram maior consumo de ração (CR) (P&lt;0,05) na primeira e na quinta semanas em relação ao controle negativo (T-2). Somente na quinta semana o grupo controle obteve maior conversão alimentar (CA) (P&lt;0,05) em relação aos outros tratamentos. Nas outras variáveis observadas, como o peso dos ovos (PO), a massa dos ovos (MO), gravidade específica (GE), unidade Haugh (UH), espessura da casca (EC) e peso da casca (PC), os diferentes tratamentos determinaram resultados similares, isso pode indicar que dietas com alta concentração de fibras e por isso de baixo custo, podem ser adotadas sem diminuição da qualidade e produção dos ovos.The present experiment was conducted to evaluate the use of enzymes phytase and carbohydrase in corn/soybean meal diets with or without fibers regarding the productive performance and egg quality (specific gravity (SG), Haugh unit (HU), shell thickness (ST) and shell weight (SW) of laying hens. Were utilized 320 commercial line Hissex White laying hens, aged 44 weeks. The hens were fed with four different treatments (10 replicates of eight each) during 10 weeks. The diets included control (T-1) based of corn, soybean meal and low concentration of fibers; (T-2) based of corn, soybean meal and high concentration of fibers; (T-3) based of maize and soybean meal supplemented with enzymes and (T-4) based of corn and soybean meal supplemented with enzymes and high concentration of fibers. The laying hens fed with the control diet (T-1) showed higher feed intake (FI) (P&lt;0,05) in the first and fifth weeks in relation to the negative control (T-2). Only in the fifth week the control group had higher feed conversion (FC) (P&lt;0,05) in relation with the other treatments. In the other variables observed, the different treatments showed similar results, it may indicate that diets with high fiber concentration and therefore low cost can be taken without decreasing the quality and egg production

    Ammonia and methane gas emissions from pig slurry: variability induced through feeding strategies

    Full text link
    Esta Tesis doctoral fue desarrollada para estudiar las emisiones de amoniaco (NH3) y metano (CH4) en purines de cerdos, y los efectos ocasionados por cambios en la formulación de la dieta. Con este propósito, fueron llevados a cabo tres estudios. El experimento 1 fue realizado con el objetivo de analizar los factores de variación de la composición de purines y establecer ecuaciones de predicción para emisiones potenciales de NH3 y CH4. Fueron recogidas setenta y nueve muestras de piensos y purines durante dos estaciones del año (verano y invierno) de granjas comerciales situadas en dos regiones de España (Centro y Mediterráneo). Se muestrearon granjas de gestación, maternidad, lactación y cebo. Se determinó la composición de piensos y purines, y la emisión potencial de NH3 y CH4. El contenido de nutrientes de los piensos fue usado como covariable en el análisis. La espectroscopia de reflectancia del infrarrojo cercano (NIRS) se evaluó como herramienta de predicción de la composición y potencial emisión de gases del purín. Se encontró una amplia variabilidad en la composición de piensos y purines. Las granjas del Mediterráneo tenían mayor pH (PDDGST>SOJ (desde 0,171 hasta 0,109 y 0,086, respectivamente) en paralelo a la disminución del potencial de emisión de CH4 por g de SV del purín (desde 301 a 269 y 256 mL, respectivamente). Todos los purines obtenidos en estos tres experimentos y Antezana et al. (2015) fueron usados para desarrollar nuevas calibraciones con la tecnología NIRS, para predecir la composición del purín y el potencial de las emisiones de gases. Se observó una buena precisión (R2cv superior a 0,92) de las calibraciones cuando muestras de los ensayos controlados (2, 3 y Antezana et al., 2015) fueron añadidas, aumentando el rango de variación. Una menor exactitud fue observada para TAN y emisiones de NH3 y CH4, lo que podría explicarse por una menor homogeneidad en la distribución de las muestras cuando se amplía el rango de variación del estudio. ABSTRACT This PhD thesis was developed to study the emissions of ammonia (NH3) and methane (CH4) from pig slurry and the effects caused by changes on diet formulation. For these proposes three studies were conducted. Experiment 1 aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential CH4 and NH3 emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (PWDDGS>SB (from 0.171 to 0.109 and 0.086, respectively) in parallel to a decrease of biochemical CH4 potential per g of VS of slurry (from 301 to 269 and 256 ml, respectively). All slurry samples obtained from these three experiments and Antezana et al. (2015) were used to develop new calibrations with NIRS technology, to predict the slurry composition and potential gaseous emissions of samples with greater variability in comparison to experiment 1. Better accuracy (R2cv above 0.92) was observed for calibrations when samples from controlled trials experiments (2, 3 and Antezana et al., 2015) were included, increasing the range of variation. A lower accuracy was observed for TAN, NH3 and CH4 gaseous emissions, which might be explained by the less homogeneous distribution with a wider range of data

    Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation

    Full text link
    [EN] The aim of this study was to establish the relationships between faecal fat concentration and gaseous emissions from pig slurry. Five diets were designed to meet essential nutrient requirements: a control and four experimental feeds including two levels (35 or 70g/kg) of calcium soap fatty acids distillate (CSP) and 0 or 200g/kg of orange pulp (OP) combined in a 2×2 factorial structure. Thirty growing pigs (six per treatment) were used to measure dry matter (DM) and N balance, coefficients of total tract apparent digestibility (CTTAD) of nutrients, faecal and urine composition and potential emissions of ammonia (NH3) and methane (CH4). Increasing dietary CSP level decreased DM, ether extract (EE) and crude protein (CP) CTTAD (by 4.0, 11.1 and 3.5%, respectively, P <0.05), but did not influence those of fibrous constituents. It also led to a decrease (from 475 to 412g/kg DM, P <0.001) of faecal concentration of neutral detergent fibre (aNDFom) and to an increment (from 138 to 204g/kg, P <0.001) of EE in faecal DM that was related to greater CH4 emissions, both per gram of organic matter (P =0.021) or on a daily basis (P <0.001). Level of CSP did not affect N content in faeces or urine, but increased daily DM (P <0.001), and N (P =0.031) faecal excretion with no effect on urine N excretion. This resulted in lesser (P =0.036) NH3 potential emission per kg of slurry. Addition of OP decreased CTTAD of EE (by 7.9%, P =0.044), but increased (P <0.05) that of all the fibrous fractions. As a consequence, faecal EE content increased (from 165 to 177g/kg DM; P =0.012), and aNDFom decreased greatly (from 483 to 404g/kg DM, P <0.001), which in all resulted in a lack of effect of OP on CH4 potential emission. Inclusion of OP in the diet also led to a significant decrease of CP CTTAD (by 6.85%, P <0.001), and to an increase of faecal CP concentration (from 174 to 226g/kg DM, P <0.001), with no significant influence on urine N content. These effects resulted in higher N faecal losses, especially those of the undigested dietary origin, without significant effects on potential NH3 emission. No significant interactions between CSP and OP supplementation were observed for the gaseous emissions measuredThis project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We also thank CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil for a research fellowship grant.Antezana Julián, WO.; Calvet Sanz, S.; Beccaccia, A.; Ferrer Riera, P.; Blas, CD.; García-Rebollar, P.; Cerisuelo García, A. (2015). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Animal Feed Science and Technology. (209):128-136. https://doi.org/10.1016/j.anifeedsci.2015.07.022S12813620

    Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets

    Full text link
    This research aimed to investigate effects of protein source in practical diets on nutrient excretion and potential emissions of ammonia (NH3) and methane (CH4) in pigs. Three experimental feeds were designed to substitute a mixture of soybean meal and soybean hulls (SB diet) with sunflower meal (SFM) or wheat DDGS (WDDGS). The proportion of other ingredients was also modified in order to maintain similar nutrient contents across diets. Changes in protein source led to differences in dietary content of neutral detergent insoluble crude protein, soluble fibre (SF) and acid detergent lignin. Twenty-four pigs (8 per diet), weighing 52.3 or 60.8 kg at the first and second batch, respectively, were housed individually in metabolic pens to determine during a 7-day period dry matter (DM) balance, coefficients of total tract apparent digestibility (MAD) of nutrients, and faecal and urine composition. Representative slurry samples from each animal were used to measure NH3 and CH4 emissions over an 11 and/or 100-day storage period, respectively. Neither DM intake, nor DM or energy CTTAD differed among experimental diets, but type of feed affected (P WDDGS > SB (from 0.171 to 0.109 and 0.086, respectively) in parallel to a decrease of potential CH4 emission per g of OM of slurry (from 301 to 269 and 256 mL, respectively). When both gaseous emissions were expressed per animal and day, differences followed the same trend, but did not reach significant levels. (C) 2015 Elsevier B.V. All rights reserved.This project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We also thank CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil for a research fellowship grant.Beccaccia, A.; Cerisuelo García, A.; Calvet Sanz, S.; Ferrer Riera, P.; Estellés, F.; Blas, CD.; Garcia-Rebollar, P. (2015). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets. Animal Feed Science and Technology. 209:137-144. https://doi.org/10.1016/j.anifeedsci.2015.07.02113714420
    corecore