781 research outputs found

    Forced Burgers Equation in an Unbounded Domain

    Full text link
    The inviscid Burgers equation with random and spatially smooth forcing is considered in the limit when the size of the system tends to infinity. For the one-dimensional problem, it is shown both theoretically and numerically that many of the features of the space-periodic case carry over to infinite domains as intermediate time asymptotics. In particular, for large time TT we introduce the concept of TT-global shocks replacing the notion of main shock which was considered earlier in the periodic case (1997, E et al., Phys. Rev. Lett. 78, 1904). In the case of spatially extended systems these objects are no anymore global. They can be defined only for a given time scale and their spatial density behaves as ρ(T)T2/3\rho(T) \sim T^{-2/3} for large TT. The probability density function p(A)p(A) of the age AA of shocks behaves asymptotically as A5/3A^{-5/3}. We also suggest a simple statistical model for the dynamics and interaction of shocks and discuss an analogy with the problem of distribution of instability islands for a simple first-order stochastic differential equation.Comment: 9 pages, 10 figures, revtex4, J. Stat. Phys, in pres

    Complex-space singularities of 2D Euler flow in Lagrangian coordinates

    Full text link
    We show that, for two-dimensional space-periodic incompressible flow, the solution can be evaluated numerically in Lagrangian coordinates with the same accuracy achieved in standard Eulerian spectral methods. This allows the determination of complex-space Lagrangian singularities. Lagrangian singularities are found to be closer to the real domain than Eulerian singularities and seem to correspond to fluid particles which escape to (complex) infinity by the current time. Various mathematical conjectures regarding Eulerian/Lagrangian singularities are presented.Comment: 5 pages, 2 figures, submitted to Physica

    Kicked Burgers Turbulence

    Get PDF
    Burgers turbulence subject to a force f(x,t)=jfj(x)δ(ttj)f(x,t)=\sum_jf_j(x)\delta(t-t_j), where the tjt_j's are ``kicking times'' and the ``impulses'' fj(x)f_j(x) have arbitrary space dependence, combines features of the purely decaying and the continuously forced cases. With large-scale forcing this ``kicked'' Burgers turbulence presents many of the regimes proposed by E, Khanin, Mazel and Sinai (1997) for the case of random white-in-time forcing. It is also amenable to efficient numerical simulations in the inviscid limit, using a modification of the Fast Legendre Transform method developed for decaying Burgers turbulence by Noullez and Vergassola (1994). For the kicked case, concepts such as ``minimizers'' and ``main shock'', which play crucial roles in recent developments for forced Burgers turbulence, become elementary since everything can be constructed from simple two-dimensional area-preserving Euler--Lagrange maps. One key result is for the case of identical deterministic kicks which are periodic and analytic in space and are applied periodically in time: the probability densities of large negative velocity gradients and of (not-too-large) negative velocity increments follow the power law with -7/2 exponent proposed by E {\it et al}. (1997) in the inviscid limit, whose existence is still controversial in the case of white-in-time forcing. (More in the full-length abstract at the beginning of the paper.)Comment: LATEX 30 pages, 11 figures, J. Fluid Mech, in pres

    Singularities of Euler flow? Not out of the blue!

    Full text link
    Does three-dimensional incompressible Euler flow with smooth initial conditions develop a singularity with infinite vorticity after a finite time? This blowup problem is still open. After briefly reviewing what is known and pointing out some of the difficulties, we propose to tackle this issue for the class of flows having analytic initial data for which hypothetical real singularities are preceded by singularities at complex locations. We present some results concerning the nature of complex space singularities in two dimensions and propose a new strategy for the numerical investigation of blowup.(A version of the paper with higher-quality figures is available at http://www.obs-nice.fr/etc7/complex.pdf)Comment: RevTeX4, 10 pages, 9 figures. J.Stat.Phys. in press (updated version

    Topological Shocks in Burgers Turbulence

    Full text link
    The dynamics of the multi-dimensional randomly forced Burgers equation is studied in the limit of vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global structure which is determined by the topology of the configuration space. This structure is shown to be particularly rigid for the case of periodic boundary conditions.Comment: 4 pages, 4 figures, RevTex4, published versio

    Trunk - crown growth trade off in pollarded trees: influence on wood production

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Universality of Velocity Gradients in Forced Burgers Turbulence

    Full text link
    It is demonstrated that Burgers turbulence subject to large-scale white-noise-in-time random forcing has a universal power-law tail with exponent -7/2 in the probability density function of negative velocity gradients, as predicted by E, Khanin, Mazel and Sinai (1997, Phys. Rev. Lett. 78, 1904). A particle and shock tracking numerical method gives about five decades of scaling. Using a Lagrangian approach, the -7/2 law is related to the shape of the unstable manifold associated to the global minimizer.Comment: 4 pages, 2 figures, RevTex4, published versio

    Non-perturbative renormalisation of four fermion operators and B-bar B mixing with Wilson fermions

    Get PDF
    We present new results for the renormalisation and subtraction constants for the four fermion Delta F=2 operators, computed non-perturbatively in the RI-MOM scheme (in the Landau gauge). From our preliminary analysis of the lattice data at beta=6.45, for the B-bar B mixing bag-parameter we obtain B_B^{RGI} = 1.46(7)(1).Comment: 3 pages (4 figures), Lattice2002(heavyquark
    corecore