89 research outputs found

    Integration of Mathematica in the Large Hadron Collider Database

    Get PDF
    The CERN Large Hadron Collider (LHC) is the major project in particle physics in the world. The particle accelerator is a 27 km ring where many thousands of superconducting magnets keep protons on track. Results from complex measurements of, for example, the magnetic field and the geometry of the main bending and focusing magnets are stored in databases for analysis and quality control. The geometry of the 15 m long main bending magnet weighing almost 30 tons has to be controlled within tenths of mm. All measurements are stored in ORACLE data bases. They are organized in two types: raw and derived data. Raw data come from the measurement devices and derived data describe quality measures calculated from the raw measurements. For example, the transverse position of the beam tube center relative to the theoretical axis of the accelerator is measured along the magnet. This data is used to simulate improvements or to calculate quality criteria, used in the daily quality checks of all produced magnets. The positions of the corrector magnets housed inside the magnet assembly are measured in industry before the closing of the magnet cold mass; they have to be calculated from reference points on the outside of the cold mass one measured after delivery to CERN. The results from these calculations are re-injected into the data base for easy access. The calculations cannot be performed by the ORACLE query language. There comes the interest of Mathematica, which is easy to interface with the existing ORACLE and Java environment. Maintenance and improvements of calculations are comfortable due to Mathematica's explicit functional language

    Control of the Dipole Cold Mass Geometry at CERN to Optimize LHC Performance

    Get PDF
    The detailed shape of the 15 m long superconducting LHC dipole cold mass is of high importance as it determines three key parameters: the beam aperture, nominally of the order of 10 beam standard deviations; the connectivity of the beam- and technical lines between magnets; the transverse position of non-linear correctors mounted on the dipole ends. An offset of the latter produces unwanted beam dynamics perturbations. The tolerances are in the order of mm over the length of the magnet. The natural flexibility of the dipole and its mechanical structure allow deformations during handling and transportation which exceed the tolerances. This paper presents the observed deformations of the geometry during handling and various operations at CERN, deformations which are interpreted thanks to a simple mechanical model. These observations have led to a strategy of dipole geometry control at CERN, based on adjustment of the position of its central support (the dipole is supported at three positions, horizontally and vertically) to recover individually or statistically their original shape as manufactured. The implementation of this strategy is discussed, with the goal of finding a compromise between conflicting requirements: quality of the dipole geometry, available resources for corrective actions and magnet installation strategy whereby the geometry tolerances depend on the final magnet position in the machine

    Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC

    Get PDF
    The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication

    Electrical and Magnetic Performance of the LHC Short Straight Sections

    Get PDF
    The Short Straight Section (SSS) for the Large Hadron Collider arcs, containing in a common cryostat the lattice quadrupoles and correction magnets, have now entered series production. The foremost features of the lattice quadrupole magnets are a two-in-one structure containing two 56 mm aperture, two-layers coils wound from 15.1 mm wide NbTi cables, enclosed by the stainless steel collars and ferromagnetic yoke, and inserted into the inertia tube. Systematic cryogenic tests are performed at CERN in order to qualify these magnets with respect to their cryogenic and electrical integrity, the quench performance and the field quality in all operating conditions. This paper reports the main results obtained during tests and measurements in superfluid helium. The electrical characteristics, the insulation measurements and the quench performance are compared to the specifications and expected performances for these magnets. The field in the main quadrupole is measured using three independent systems: 10-m long twin rotating coils, an automatic scanner, and single stretched wire. A particular emphasis is given to the integrated transfer function which has a spread of around 12 units rms in the production and is a critical issue. The do-decapole harmonic component, which required trimming through a change in coil shims, is also discussed. Finally, the magnetic axis measurements at room temperature and at 1.9 K, providing the nominal vertical shift for installation are reported

    Warm and Cold Magnetic and Mechanical Alignment Tests of LHC Short Straight Sections

    Get PDF
    This paper contains a summary of the results of the magnetic and mechanical alignment tests performed at CERN on the first 111 arc Short Straight Sections. These include the mechanical axis of the Cold Bore Tube at room temperature, the magnetic axis of main quadrupoles and correctors at both room and cryogenic temperature, and the field direction of the main quadrupoles. The measurements show that the quality of the assemblies is generally within the requirements for the machine

    Electrical and magnetic performance of the LHC short straight sections

    Get PDF
    The Short Straight Section (SSS) for the Large Hadron Collider arcs, containing in a common cryostat the lattice quadrupoles and correction magnets, have now entered series production. The foremost features of the lattice quadrupole magnets are a two-in-one structure containing two 56 mm aperture, two-layers coils wound from 15.1 mm wide NbTi cables, enclosed by the stainless steel collars and ferromagnetic yoke, and inserted into the inertia tube. Systematic cryogenic tests are performed at CERN in order to qualify these magnets with respect to their cryogenic and electrical integrity, the quench performance and the field quality in all operating conditions. This paper reports the main results obtained during tests and measurements in superfluid helium. The electrical characteristics, the insulation measurements and the quench performance are compared to the specifications and expected performances for these magnets. The field in the main quadrupole is measured using three independent systems: 10-m long twin rotating coils, an automatic scanner, and single stretched wire. A particular emphasis is given to the integrated transfer function which has a spread of around 12 units rms in the production and is a critical issue. The do-decapole harmonic component, which required trimming through a change in coil shims, is also discussed. Finally, the magnetic axis measurements at room temperature and at 1.9 K, providing the nominal vertical shift for installation are reported.peer-reviewe

    Short-Term Environmental Enrichment Enhances Adult Neurogenesis, Vascular Network and Dendritic Complexity in the Hippocampus of Type 1 Diabetic Mice

    Get PDF
    Background: Several brain disturbances have been described in association to type 1 diabetes in humans. In animal models, hippocampal pathological changes were reported together with cognitive deficits. The exposure to a variety of environmental stimuli during a certain period of time is able to prevent brain alterations and to improve learning and memory in conditions like stress, aging and neurodegenerative processes. Methodology/Principal Findings: We explored the modulation of hippocampal alterations in streptozotocin-induced type 1 diabetic mice by environmental enrichment. In diabetic mice housed in standard conditions we found a reduction of adult neurogenesis in the dentate gyrus, decreased dendritic complexity in CA1 neurons and a smaller vascular fractional area in the dentate gyrus, compared with control animals in the same housing condition. A short exposure-10 days- to an enriched environment was able to enhance proliferation, survival and dendritic arborization of newborn neurons, to recover dendritic tree length and spine density of pyramidal CA1 neurons and to increase the vascular network of the dentate gyrus in diabetic animals. Conclusions/Significance: The environmental complexity seems to constitute a strong stimulator competent to rescue th

    Aberrant iPSC-derived human astrocytes in Alzheimer's disease

    Get PDF
    The pathological potential of human astroglia in Alzheimer's disease (AD) was analysed in vitro using induced pluripotent stem cell (iPSC) technology. Here, we report development of a human iPSC-derived astrocyte model created from healthy individuals and patients with either early-onset familial AD (FAD) or the late-onset sporadic form of AD (SAD). Our chemically-defined and highly efficient model provides >95% homogeneous populations of human astrocytes within 30 days of differentiation from cortical neural progenitor cells (NPCs). All astrocytes expressed functional markers including; glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1), S100B and glutamine synthetase (GS) comparable to that of adult astrocytes in vivo. However, induced astrocytes derived from both SAD and FAD patients exhibit a pronounced pathological phenotype, with a significantly less complex morphological appearance, overall atrophic profiles, and abnormal localisation of key functional astroglial markers. Furthermore, NPCs derived from identical patients did not show any differences, therefore, validating that remodelled astroglia are not as a result of defective neuronal intermediates. This work not only presents a novel model to study the mechanisms of human astrocytes in vitro, but also provides an ideal platform for further interrogation of early astroglial cell-autonomous events in AD and the possibility of identification of novel therapeutic targets for the treatment of AD

    Destruction of Dopaminergic Neurons in the Midbrain by 6-Hydroxydopamine Decreases Hippocampal Cell Proliferation in Rats: Reversal by Fluoxetine

    Get PDF
    Background Non-motor symptoms (e.g., depression, anxiety, and cognitive deficits) in patients with Parkinson disease (PD) precede the onset of the motor symptoms. Although these symptoms do not respond to pharmacological dopamine replacement therapy, their precise pathological mechanisms are currently unclear. The present study was undertaken to examine whether the unilateral 6-hydroxydopamine (6-OHDA) lesion to the substantia nigra pars compacta (SNc), which represents a model of long-term dopaminergic neurotoxicity, could affect cell proliferation in the adult rat brain. Furthermore, we examined the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine and the selective noradrenaline reuptake inhibitor maprotiline on the reduction in cell proliferation in the subgranular zone (SGZ) by the unilateral 6-OHDA lesion. Methodology/Principal Findings A single unilateral injection of 6-OHDA into the rat SNc resulted in an almost complete loss of tyrosine hydroxylase (TH) immunoreactivity in the striatum and SNc, as well as in reductions of TH-positive cells and fibers in the ventral tegmental area (VTA). On the other hand, an injection of vehicle alone showed no overt change in TH immunoreactivity. A unilateral 6-OHDA lesion to SNc significantly decreased cell proliferation in the SGZ ipsilateral to the 6-OHDA lesion, but not in the contralateral SGZ or the subventricular zone (SVZ), of rats. Furthermore, subchronic (14 days) administration of fluoxetine (5 mg/kg/day), but not maprotiline significantly attenuated the reduction in cell proliferation in the SGZ by unilateral 6-OHDA lesion. Conclusions/Significance The present study suggests that cell proliferation in the SGZ of the dentate gyrus might be, in part, under dopaminergic control by SNc and VTA, and that subchronic administration of fluoxetine reversed the reduction in cell proliferation in the SGZ by 6-OHDA. Therefore, SSRIs such as fluoxetine might be potential therapeutic drugs for non-motor symptoms as well as motor symptoms in patients with PD, which might be associated with the reduction in cell proliferation in the SGZ

    Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice

    Get PDF
    The lysophosphatidic acid LPA₁ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA₁ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.Male LPA₁-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.These results reveal that the absence of the LPA₁ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA₁ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology
    corecore