70 research outputs found

    Heat flux measurement from thermal infrared imagery in low-flux fumarolic zones: Example of the Ty fault (La Soufrière de Guadeloupe)

    Get PDF
    International audienceMonitoring the geothermal flux of a dormant volcano is necessary both for hazard assessment and for studying hydrothermal systems. Heat from a magma body located at depth is transported by steam to the surface, where it is expelled in fumaroles if the heat flow exceeds 500 W/m2. If the heat flow is lower than 500 W/m2, steam mainly condensates in the soil close to surface and produces a thermal anomaly detectable at the surface. In this study, we propose a method to quantify low heat fluxes from temperature anomalies measured at the surface by a thermal infrared camera. Once corrected from the atmospheric and surface effects, thermal infrared images are used to compute (1) the excess of radiative flux, (2) the excess of sensible flux and (3) the steam flux from the soil to the atmosphere. These calculations require measurements of atmospheric parameters (temperature, wind velocity and humidity) and estimations of surface parameters (roughness and emissivity). This method has been tested on a low-flux fumarolic zone of the Soufrière volcano (Guadeloupe Island -- Lesser Antilles), and compared to a flux estimation realized from the thermal gradient measurements into the soil. The two methods show a good agreement and a similar precision (267 ± 46 W/m2 for the thermal infrared method, and 275 ± 50 W/m2 for the vertical temperature gradient method), if surface roughness is well calibrated

    Joint inversion of P-wave velocity and density, application to La Soufrière of Guadeloupe hydrothermal system

    Get PDF
    International audienceWe present the result of a 3-D gravity and P-wave traveltime joint inversion applied to the hydrothermal system of La Soufri'ere of Guadeloupe. The joint inversion process is used here to overcome the different resolution limitations attached to the two data sets. P-wave traveltimes were obtained from three active seismic surveys that were conducted from 2001 to 2007. Gravity data collected during a microgravity campaign is described in a companion paper. We use a joint inversion process based on a Bayesian formulation and a deterministic iterative approach. The coupling between slowness and density is introduced through a supplementary constraint in the misfit function that tries to minimize the distance between parameter values and a theoretical relationship. This relationship is derived from measurements on samples representative of Mt Pel'ee of Martinique and La Soufri'ere volcanoes. We chose a grid discretization that leads to an under-determined problem that we regularize using spatial exponential covariance between the nodes parameters. Our results are compared to geophysical electromagnetic results obtained using resistivity and VLF surveys. They confirm the presence of highly contrasted dense/fast and light/slow zones in La Soufri'ere dome and crater basement. Our images suggest however that some non-conductive zones may be massive andesite bodies rather than argilized zones, and that these bodies may have deeper roots than hypothesized

    Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles). Insights from long-term geochemical monitoring of halogen- rich hydrothermal fluids

    Get PDF
    International audienceMore than three decades of geochemical monitoring of hot springs and fumaroles of La Soufrière of Guadeloupe allows the construction of a working model of the shallow hydrothermal system. This system is delimited by the nested caldera structures inherited from the repeated flank collapse events and the present dome built during the last magmatic eruption (1530 AD) and which has been highly fractured by the subsequent phreatic or phreatomagmatic eruptions. Because it is confined into the low volume, highly compartmented and partially sealed upper edifice structure, the hydrothermal system is highly reactive to perturbations in the volcanic activity (input of deep magmatic fluids), the edifice structure (sealing and fracturing) and meteorology (wet tropical regime). The current unrest, which began with a mild reactivation of fumarolic activity in 1990, increased markedly in 1992 with seismic swarms and an increase of degassing from the summit of the dome. In 1997 seismic activity increased further and was accompanied by a sudden high-flux HCl-rich gas from summit fumaroles. We focus on the interpretation of the time-series of the chemistry and temperature of fumarolic gases and hot springs as well as the relative behaviours of halogens (F, Cl, Br and I). This extensive geochemical time-series shows that the deep magmatic fluids have undergone large changes in composition due to condensation and chemical interaction with shallow groundwater (scrubbing). It is possible to trace back these processes and the potential contribution of a deep magmatic source using a limited set of geochemical time series: T, CO2 and total S content in fumaroles, T and Cl- in hot springs and the relative fractionations between F, Cl, Br and I in both fluids. Coupling 35 years of geochemical data with meteorological rainfall data and models of ion transport in the hydrothermal aquifers has allowed us to identify a series of magmatic gas pulses into the hydrothermal system since the 1976-1977 crisis. The contrasting behaviours of S- and Cl- bearing species in fumarolic gas and in thermal springs suggests that the current activity is the result of a new magma intrusion which was progressively emplaced at shallow depth since ~1992. Although it might still be evolving, the characteristics of this new intrusion indicate that it hasalready reached a magnitude similar to the intrusion that was emplaced during the 1976-1977 eruptive crisis. The assessment of potential hazards associated with evolution of the current unrest must consider the implications of recurrent intrusion and further pressurization of the hydrothermal system on the likelihood of renewed phreatic explosive activity. Moreover, the role of hydrothermal pressurization on the basal friction along low-strength layers within the upper part of the edifice must be evaluated with regards to partial flank collapse. At this stage enhanced monitoring, research, and data analysis is required to quantify the uncertainties related to future scenarios of renewed eruptive activity and magmatic evolution

    Empirical model for rapid macroseismic intensities prediction in Guadeloupe and Martinique Modèle empirique pour la prédiction rapide des intensités macrosismiques en Guadeloupe et Martinique

    Get PDF
    International audienceWe describe a simple model for prediction of macroseismic intensities adapted to Guadeloupe and Martinique (Lesser Antilles), based on a combination of peak ground acceleration (PGA) predictive equation and a forward relation between acceleration and intensity. The PGA predictive equation is built from a 3-parameter functional form constrained by measurements from permanent accelerometer stations, mostly associated with Les Saintes crustal earthquake (21/11/2004, Mw = 6:3) and its many aftershocks. The forward intensity model is checked on a database of recent instrumental events of various origins with magnitudes 1.6 to 7.4, distances from 4 to 300 km, and observed intensities from I to VIII. Global sigma residual equals 0.8 in the MSK scale, suggesting a larger applicability range than the intermediate PGA predictive equation. The model is presently used by the French Lesser Antilles observatories to produce automatic reports for earthquakes potentially felt

    Remote and in situ plume measurements of acid gas release from La Soufrière volcano, Guadeloupe

    Get PDF
    Abstract This paper presents the first remote measurements of La Soufrière gas emissions since the fumarolic and seismic reactivation in 1992. The chemical composition of the plumes has been measured from May 2003 to September 2004 using an Open Path Fourier Transform InfraRed (OP-FTIR) spectrometer, up to 15 m downwind the South Crater. HCl is clearly detected (concentration between 2.4 and 12 ppmv) whereas SO 2 and H 2 S generally remain below the detection limit of the OP-FTIR. Direct measurements of SO 2 and H 2 S near the South Crater with a Lancom III analyzer show a fast decrease of their concentrations with the distance. Calculated Cl / S mass ratios are high: from 9.4 F 1.7 at 15 m from the vent to 2.8 F 0.6 at 140 m. The enrichment in HCl of the gas emitted at La Soufrière, observed since 1998, corresponds to the degassing of a magma enriched in Cl and depleted in S. This result agrees with isotopic measurements which suggest a magmatic origin of the gases. Readjustments inside the volcanic system may have taken place during the seismic activity beginning in 1992 and enhance the transfer of magmatic gases to the summit.

    INTERFÉROMÉTRIE RADAR APPLIQUÉE AUX VOLCANS : CAS DE L’ETNA ET DES CHAMPS PHLÉGRÉENS (ITALIE)

    Get PDF
    During the last few years, the radar images collected by the European satellites ERS1 and ERS2, the Japanese satellite JERS and the Canadian satellite RADARSAT have been used with success to create interferograms. This technique has been applied for geophysical applications like co-seismic deformation mapping, volcano deformation monitoring, landslides monitoring, mining subsidence detection, glaciers monitoring. Here we report the research carried out by our group on Etna volcano (Italy) and in the area of Naples (Italy) where are located several potentially active volcanoes (Vesuvius, Ischia) and where a subsidence of the caldera of Campi Flegrei is still on going in response to the 1982-1984 seismic crisis. Etna is the volcano that has been studied first using ERS SAR interferometry. Using this method, a large scale deflation of the volcano associated with the large 1991-1993 eruption was detected in data covering the second half of the eruption. Further studies showed that the local deformation fields located in Valle del Bove (East of the volcano) where associated with the compaction of the 1986-1987 and 1989 lava fields and also partly with a subsidence of the surrounding terrain in response to the load of the new deposited material. Other local deformation fields have been identified, corresponding to the 1983, 1981 and 1971 lava fields. However, due to its strong topography, interferograms of Etna are affected by tropospheric effects. Those effects must be eliminated in order to correctly interpret the fringes pattern. The problem of the troposphere has been first investigated from its theoretical point of view and using existing local meteorological data as well as radio-soundings data. Recently, thanks to the large amount of available interferograms, another approach has been investigated, consisting in the research of a correlation fringe/elevation in the interferograms themselves. This approach, operated either in automatic mode (automatic fringe unwrapping) or in manual mode proved to be efficient for most of the coherent interferograms. After removal of the tropospheric correction, the evolution of the deformation of the volcano at large scale between 1992 and 1998 has been inferred. The subsidence occurring during the second half of the 1992 eruption as well as the uplift preceding the 1995 unrest of the Southeast crater are visible, but their amplitude is less than previously estimated. The depth of the modelled source of subsidence/uplift related to the large scale deformation is of the order of 6 to 8 km, not well constrained by the data. The study of the correlation fringe/elevation was possible only after a detailed analysis of the spatial and temporal properties of coherence of the Etna area. Indeed, the technique of fringe unwrapping for fringe/elevation correlation analysis is possible only if the poorly coherent pixels are eliminated. A map of the most coherent pixels of the volcano was produced. The recent lava fields as well as the towns and villages surrounding the volcano are the most coherent areas. The quality of the interferograms is also enhanced when high accuracy DEM (Digital Elevation Model) are used. Using kinematic GPS data collected along more than 100 km of road around the volcano, we assessed the accuracy of several DEMs of Etna. The most accurate DEM was produced by digitising 1/25.000e maps of Etna. This DEM does not take into account the topographic changes due to the recent eruptions. Merging other more recent DEMs corresponding to those areas, we produced an updated relatively high accuracy DEM (±3 m) of Etna. In the Naples area, we analysed interferograms in the period 1993-1996 and show that the Campi Flegrei caldera is still subsiding at a rate of about 30 mm/year

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    A strategy to explore the topography-driven distortions in the tilt field induced by a spherical pressure source: the case of Mt Etna

    No full text
    International audienceWe present a strategy to thoroughly investigate the effects of prominent topography on the surface tilt due to a spherical pressure source. We use Etna's topography as a case of study and, for different source positions, we compare the tilt fields calculated through (i) a 3-D boundary element method and (ii) analytical half-space solutions. We systematically determine (i) the source positions leading to the strongest tilt misfits when numerical and analytical results are compared and (ii) the surface areas where the strongest distortions in the tilt field are most likely to be observed. We also demonstrate that, under critical circumstances, in terms of respective positions of pressure source and observation points, results of inversion procedures aimed at retrieving the source parameters can be misleading, if tilt data are analysed using models that do not account for topography
    • …
    corecore