1,155 research outputs found

    2D photonic-crystal optomechanical nanoresonator

    Full text link
    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8 % over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane, is used to form a compact microcavity involving the suspended nano-membrane as end mirror. The resulting cavity has a waist size smaller than 10 μ\mum and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane

    Demonstration of coherent emission from high-β\beta photonic crystal nanolasers at room temperature

    Full text link
    We report on lasing at room temperature and at telecommunications wavelength from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser cavities with a small modal volume and high quality factor display a high spontaneous emission coupling factor beta. Lasing is confirmed by measuring the second order autocorrelation function. A smooth transition from chaotic to coherent emission is observed, and coherent emission is obtained at 8 times the threshold power

    A biochemical approach to define the interactome for calpain2 in endothelial cells

    Get PDF
    Current repositories for protein-protein interactions and high throughput screening methods focus on individual gene products and do not consider the significance of calcium induced conformational changes. These limitations suggest the need for alternative strategies to better define the calpain2 interactome. Affinity capture coupled with LC-MS/MS and proteomic analysis of the recovered proteins provides a powerful approach to identify protein-protein interactions for the heterodimeric calpain2. CAPN2 (rat) was modified to be catalytically incompetent (C105A) and fused with a C-terminal 15 residue peptide optimized for biotinylation by the biotin protein ligase, BirA. The resulting CAPN2*, heterodimerized with truncated CAPNS1, was purified from E. coli, and biotinylated in vitro. Biotinylated calpain2* served as ‘bait’ for streptavidin affinity capture of calpain2 and its interacting proteins from lysates of bovine aortic (BAEC) and human umbilical vein (HUVEC) endothelial cells (ECs). Protein-calpain2 complexes were formed in the presence of calcium to allow EGTA elution of interacting proteins and LC-MS/MS analysis in the absence of an abundance of bait peptides. Capture of the well characterized calpain inhibitor protein calpastatin (CAST), and a known substrate, vimentin provide proof of concept and validates the conformational integrity of the bait calpain2*. Significant overlap between datasets (two from BAEC and one HUVEC) is also encouraging. Of numerous other proteins including several annexins, ANXA1 was confirmed as a substrate for calpain2. Findings are expected to contribute to continuing efforts in the field to better characterize calpain2’s selection of substrates and may reveal other important clues to calpain’s localization and regulation

    Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation

    Get PDF
    Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or repressed by a cascade of transcription factors

    Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides

    Get PDF
    The integration of two-dimensional III-V InP-based photonic crystal and silicon wire waveguides is achieved through an accurate alignment of the two optical levels using mix-and-match deep ultraviolet (DUV)/electron beam lithography. The adhesively bonded structures exhibit an enhancement of light emission at frequencies where low group velocity modes of the photonic crystal line defect waveguides occur. Pulsed laser operation is obtained from these modes at room temperature under optical pumping. The laser light is coupled out of the Si waveguide via grating couplers directly to single mode fiber
    • …
    corecore