293 research outputs found

    Audit market structure, fees and choice in a period of structural change: evidence from the UK – 1998–2003

    Get PDF
    This paper presents evidence on audit market concentration and auditor fee levels in the UK market in the crucial period of structural change following the PricewaterhouseCoopers’ (PwC) merger and encompassing Andersen’s demise (1998–2003). Given the current interest in auditor choice, analysis is also undertaken at the individual audit firm level and by industry sector. There is evidence of significant upward pressure on audit fees since 2001 but only for smaller auditees. Audit fee income for top tier auditors (Big 5/4) did not change significantly while the number of auditees fell significantly, consistent with a move towards larger, less risky, clients. A decomposition analysis of the aggregate Big 5/4 concentration ratio changes over the period identifies the impact of four distinct consumer-based reasons for change: leavers; net joiners; non-par auditor switches; and (only for the audit fees measure) audit fee changes. Andersen’s demise markedly reduced the level of inequality among the top tier firms but PwC retained its position as a ‘dominant firm’. On switching to the new auditor, former Andersen clients experienced an initial audit fee rise broadly in line with inflation, with no evidence of fee premia or discounting. They also reported significantly lower NAS fees, consistent with audit firms and auditees responding to public concerns about perceptions of auditor independence. There is no general evidence of knowledge spillover effects or cross-subsidisation of the audit fee by NAS. The combined findings provide no evidence to indicate that recent structural changes have resulted in anticompetitive pricing; the key concerns remain the lack of audit firm choice and issues concerning the governance and accountability of audit firms

    Generic harvest control rules for European fisheries

    Get PDF
    In European fisheries, most stocks are overfished and many are below safe biological limits, resulting in a call from the European Commission for new long-term fisheries management plans. Here, we propose a set of intuitive harvest control rules that are economically sound, compliant with international fishery agreements, based on relevant international experiences, supportive of ecosystem-based fisheries management and compatible with the biology of the fish stocks. The rules are based on the concept of maximum sustainable yield (MSY), with a precautionary target biomass that is 30% larger than that which produces MSY and with annual catches of 91% MSY. Allowable catches decline steeply when stocks fall below MSY levels and are set to zero when stocks fall below half of MSY levels. We show that the proposed rules could have prevented the collapse of the North Sea herring in the 1970s and that they can deal with strong cyclic variations in recruitment such as known for blue whiting. Compared to the current system, these rules would lead to higher long-term catches from larger stocks at lower cost and with less adverse environmental impact

    Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity

    Get PDF
    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical role in activity-dependent plasticity and hippocampal-dependent learning. Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that weaken synaptic transmission. Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy

    Identification of peripheral inflammatory markers between normal control and Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple pathogenic factors may contribute to the pathophysiology of Alzheimer's disease (AD). Peripheral blood markers have been used to assess biochemical changes associated with AD and mild cognitive impairment (MCI) and involved in their pathophysiology.</p> <p>Methods</p> <p>Plasma samples and clinical data were obtained from participants in the Ansan Geriatric Study (AGE study). Plasma concentrations of four candidate biomarkers were measured in the normal control (NC), MCI, and AD group: interleukin-8 (IL-8), IL-10, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α).</p> <p>Body mass index (BMI), MMSE (Mini Mental State Examination), CDR(Clinical Dementia Rating) score and homocystein level were recorded with social and demographic information.</p> <p>Results</p> <p>Total of 59 subjects were randomly selected for this analysis [NC (n = 21), MCI(n = 20) and AD(n = 18)]. In demographic data, educational year was correlated with the diagnosis states (<b><it>p </it></b>< 0.0001). No significant differences in cardiovascular disease, BMI and use of NSAIDs were found in MCI or AD group compared with NC group, respectively. The involvement of inflammatory illness or conditions in subjects, WBC count, fibrinogen and homocystein of the three groups, but no significant differences were found in each groups. The plasma IL-8 level was lower in MCI and AD patients compared with the normal control group (respectively, <it>p </it>< 0.0001). The MCI and AD patients had similar MCP-1, IL-10, and TNF-α level.</p> <p>Conclusions</p> <p>Our study suggests the existence of an independent and negative relationship between plasma IL-8 levels and functional status in MCI and AD patients.</p

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration

    Get PDF
    Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis

    Quality assurance in pathology in colorectal cancer screening and diagnosis—European recommendations

    Get PDF
    In Europe, colorectal cancer is the most common newly diagnosed cancer and the second most common cause of cancer deaths, accounting for approximately 436,000 incident cases and 212,000 deaths in 2008. The potential of high-quality screening to improve control of the disease has been recognized by the Council of the European Union who issued a recommendation on cancer screening in 2003. Multidisciplinary, evidence-based European Guidelines for quality assurance in colorectal cancer screening and diagnosis have recently been developed by experts in a pan-European project coordinated by the International Agency for Research on Cancer. The full guideline document consists of ten chapters and an extensive evidence base. The content of the chapter dealing with pathology in colorectal cancer screening and diagnosis is presented here in order to promote international discussion and collaboration leading to improvements in colorectal cancer screening and diagnosis by making the principles and standards recommended in the new EU Guidelines known to a wider scientific community

    Prenatal Activation of Microglia Induces Delayed Impairment of Glutamatergic Synaptic Function

    Get PDF
    BACKGROUND: Epidemiological studies have linked maternal infection during pregnancy to later development of neuropsychiatric disorders in the offspring. In mice, experimental inflammation during embryonic development impairs behavioral and cognitive performances in adulthood. Synaptic dysfunctions may be at the origin of cognitive impairments, however the link between prenatal inflammation and synaptic defects remains to be established. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that prenatal alteration of microglial function, including inflammation, induces delayed synaptic dysfunction in the adult. DAP12 is a microglial signaling protein expressed around birth, mutations of which in the human induces the Nasu-Hakola disease, characterized by early dementia. We presently report that synaptic excitatory currents in mice bearing a loss-of-function mutation in the DAP12 gene (DAP12(KI) mice) display enhanced relative contribution of AMPA. Furthermore, neurons from DAP12(KI) P0 pups cultured without microglia develop similar synaptic alterations, suggesting that a prenatal dysfunction of microglia may impact synaptic function in the adult. As we observed that DAP12(KI) microglia overexpress genes for IL1beta, IL6 and NOS2, which are inflammatory proteins, we analyzed the impact of a pharmacologically-induced prenatal inflammation on synaptic function. Maternal injection of lipopolysaccharides induced activation of microglia at birth and alteration of glutamatergic synapses in the adult offspring. Finally, neurons cultured from neonates born to inflamed mothers and cultured without microglia also displayed altered neuronal activity. CONCLUSION/SIGNIFICANCE: Our results demonstrate that prenatal inflammation is sufficient to induce synaptic alterations with delay. We propose that these alterations triggered by prenatal activation of microglia provide a cellular basis for the neuropsychiatric defects induced by prenatal inflammation
    corecore