35 research outputs found

    Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells

    Get PDF
    Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1–EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy

    FimL Regulates cAMP Synthesis in Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa, a ubiquitous bacteria found in diverse ecological niches, is an important cause of acute infections in immunocompromised individuals and chronic infections in patients with Cystic Fibrosis. One signaling molecule required for the coordinate regulation of virulence factors associated with acute infections is 3′, 5′-cyclic adenosine monophosphate, (cAMP), which binds to and activates a catabolite repressor homolog, Vfr. Vfr controls the transcription of many virulence factors, including those associated with Type IV pili (TFP), the Type III secretion system (T3SS), the Type II secretion system, flagellar-mediated motility, and quorum sensing systems. We previously identified FimL, a protein with histidine phosphotransfer-like domains, as a regulator of Vfr-dependent processes, including TFP-dependent motility and T3SS function. In this study, we carried out genetic and physiologic studies to further define the mechanism of action of FimL. Through a genetic screen designed to identify suppressors of FimL, we found a putative cAMP-specific phosphodiesterase (CpdA), suggesting that FimL regulates cAMP levels. Inactivation of CpdA increases cAMP levels and restores TFP-dependent motility and T3SS function to fimL mutants, consistent with in vivo phosphodiesterase activity. By constructing combinations of double and triple mutants in the two adenylate cyclase genes (cyaA and cyaB), fimL, and cpdA, we show that ΔfimL mutants resemble ΔcyaB mutants in TM defects, decreased T3SS transcription, and decreased cAMP levels. Similar to some of the virulence factors that they regulate, we demonstrate that CyaB and FimL are polarly localized. These results reveal new complexities in the regulation of diverse virulence pathways associated with acute P. aeruginosa infections

    An assessment of technology-based service encounters & network security on the e-health care systems of medical centers in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters.</p> <p>Methods</p> <p>This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data.</p> <p>Results</p> <p>The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction.</p> <p>Conclusion</p> <p>It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust.</p

    Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy

    Get PDF
    Estrogen receptor (ER) has a crucial role in normal breast development and is expressed in the most common breast cancer subtypes. Importantly, its expression is very highly predictive for response to endocrine therapy. Current endocrine therapies for ER-positive breast cancers target ER function at multiple levels. These include targeting the level of estrogen, blocking estrogen action at the ER, and decreasing ER levels. However, the ultimate effectiveness of therapy is limited by either intrinsic or acquired resistance. Identifying the factors and pathways responsible for sensitivity and resistance remains a challenge in improving the treatment of breast cancer. With a better understanding of coordinated action of ER, its coregulatory factors, and the influence of other intracellular signaling cascades, improvements in breast cancer therapy are emerging

    Bilateral salpingo-oophorectomy versus GnRH analogue in the adjuvant treatment of premenopausal breast cancer patients : cost-effectiveness evaluation of breast cancer outcome, ovarian cancer prevention and treatment

    Get PDF
    BACKGROUND AND OBJECTIVE: There is no available evidence to recommend gonadotropin-releasing hormone (GnRH) analogue-based ovarian suppression versus bilateral salpingo-oophorectomy (BSO) in the adjuvant treatment of early breast cancer, since the two approaches are considered equivalent in terms of oncologic outcome. The role of surgical ovarian ablation has been revitalized based on the advances of minimally invasive surgery, and a better understanding of clinical and molecular basis of hereditary breast/ovarian cancer syndromes. The aim of this study is to analyze the cost-effectiveness of laparoscopic BSO and GnRH analogue administration in patients aged 40-49 years with hormone-sensitive breast cancer. METHODS: A probabilistic decision tree model was developed to evaluate costs and outcomes of ovarian ablation through laparoscopic BSO, or ovarian suppression through monthly injections of GnRH analogue. Results were expressed as incremental costs per quality-adjusted life years (QALYs) gained. RESULTS: Laparoscopic BSO strategy was associated with a lower mean total cost per patient than GnRH treatment, and considering the difference in terms of QALYs, the incremental effectiveness did not demonstrate a notable difference between the two approaches. From the National Health Service perspective, and for a time horizon of 5 years, laparoscopic BSO was the dominant option compared to GnRH treatment; laparoscopic BSO was less expensive than GnRH, €2385 [95% confidence interval (CI) = 2044, 2753] vs €7093 (95% CI = 3409, 12,105), respectively, and more effective. CONCLUSION: Surgical ovarian ablation is more cost-effective than GnRH administration in the adjuvant treatment of hormone-sensitive breast cancer patients aged 40-49 years, and the advantage of preventing ovarian cancer through laparoscopic BSO should be considered

    Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition

    Full text link
    © 2015, American Society for Microbiology. Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo.We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder
    corecore