1,246 research outputs found

    First principles determination of some static and dynamic properties of the liquid 3d transition metals near melting

    Get PDF
    Producción CientíficaWe report an ab initio molecular dynamics simulation study of several static and dynamic properties of the liquid 3d transition metals. The calculated static structure factors show qualitative agreement with the available experimental data, and its second peak displays an asymmetric shape which suggests a signi1cant local icosahedral short-range order. The dynamical structure reveals propagating density 2uctuations whose dispersión relation has been evaluated; moreover, its long wavelength limit is compatible with their respective experimental sound velocity. Results are reported for the longitudinal and transverse current spectral functions as well as for the respective dispersion relations. We also analyze the possible appearance of transverse-like low-energy excitations in the calculated dynamic structure factors. Several transport coeWcients have been evaluated and compared with the available experimental data.Junta de Castilla y León (Ref. project VA124G18)Ministerio de Economía, Industria y Competitividad (Project PGC2018-093745-B-I00) and FEDE

    Stealth magnetoliposomes based on calcium-substituted magnesium ferrite nanoparticles for curcumin transport and release

    Get PDF
    Despite the promising pharmacological properties of curcumin, the transport and effective release of curcumin is still a challenge. The advances in functionalized nanocarriers for curcumin have also been motivated by the anticancer activity of this natural compound, aiming at targeted therapies. Here, stealth (aqueous and solid) magnetoliposomes containing calcium-substituted magnesium ferrite nanoparticles, CaxMg1−xFe2O4 (with x = 0.25, 0.50, 0.75) were developed as nanocarriers for curcumin. The magnetic nanoparticles exhibit superparamagnetic properties and crystalline structure, with sizes below 10 nm. The magnetoliposomes based on these nanoparticles have hydrodynamic diameters around or below 150 nm and a low polydispersity. The influence of an alternating magnetic field (AMF) on drug release over time was evaluated and compared with curcumin release by diffusion. The results suggest the potential of drug-loaded magnetoliposomes as nanocarriers that can be magnetically guided to the tumor sites and act as agents for a synergistic effect combining magnetic hyperthermia and controlled drug release.This research was funded by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CF-UM-UP (UID/FIS/04650/2019) and through the research project PTDC/QUI-QFI/28020/2017 (POCI-01-0145-FEDER-028020), financed by European Fund of Regional Development (FEDER), COMPETE2020 and Portugal2020. The magnetic measurements were supported by projects UTAP-EXPL/NTec/0046/2017, NORTE-01-0145-FEDER-028538 and PTDC/FIS-MAC/29454/2017. The APC was also funded by FCT. B.D.C. acknowledges FCT for a PhD grant (SFRH/BD/141936/2018)

    Novel magnetoliposomes based on shape-anisotropic nanoparticles for combined chemotherapy and magnetic hyperthermia

    Get PDF
    In this work, a new method for magnetoliposomes synthesis with improved and adequate structural, physicochemical and magnetic properties was developed. The overall results confirmed the development of a promising new method for the synthesis of cubic-shaped magnetic ferrite nanoparticles and a novel route for drug-loaded SMLs with improved features. The properties of these multifunctional nanosystems point to their future effective application in cancer therapy.Compete 2020, Portugal 2020, FEDER, PTDC/QUI-QFI/28020/2017, UIDB/04650/2020. SFRH/BD/141936/201

    Ecology of marine Bacteroidetes: a comparative genomics approach

    Get PDF
    5th Congress of European Microbiologists (FEMS 2013), 21-25 july 2013, Leipzig, Germany.-- 1 pagePeer Reviewe

    Magnetoliposomes based on shape anisotropic calcium/magnesium ferrite nanoparticles as nanocarriers for doxorubicin

    Get PDF
    Multifunctional lipid nanocarriers are a promising therapeutic approach for controlled drug release in cancer therapy. Combining the widely used liposome structure with magnetic nanoparticles in magnetoliposomes allies, the advantages of using liposomes include the possibility to magnetically guide, selectively accumulate, and magnetically control the release of drugs on target. The effectiveness of these nanosystems is intrinsically related to the individual characteristics of the two main components-lipid formulation and magnetic nanoparticles-and their physicochemical combination. Herein, shape-anisotropic calcium-substituted magnesium ferrite nanoparticles (Ca0.25Mg0.75Fe2O4) were prepared for the first time, improving the magnetic properties of spherical counterparts. The nanoparticles revealed a superparamagnetic behavior, high saturation magnetization (50.07 emu/g at 300 K), and a large heating capacity. Furthermore, a new method for the synthesis of solid magnetoliposomes (SMLs) was developed to enhance their magnetic response. The manufacturing technicalities were optimized with different lipid compositions (DPPC, DPPC/Ch, and DPPC/DSPE-PEG) originating nanosystems with optimal sizes for biomedical applications (around or below 150 nm) and low polydispersity index. The high encapsulation efficiency of doxorubicin in these magnetoliposomes was proven, as well as the ability of the drug-loaded nanosystems to interact with cell membrane models and release DOX by fusion. SMLs revealed to reduce doxorubicin interaction with human serum albumin, contributing to a prolonged bioavailability of the drug upon systemic administration. Finally, the drug release kinetic assays revealed a preferable DOX release at hyperthermia temperatures (42 °C) and acidic conditions (pH = 5.5), indicating them as promising controlled release nanocarriers by either internal (pH) and external (alternate magnetic field) stimuli in cancer therapy.This research was funded by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CF-UM-UP (UIDB/04650/2020) and through the research project PTDC/QUI-QFI/28020/2017 (POCI-01-0145-FEDER-028020), co-financed by European Fund of Regional Development (FEDER), COMPETE2020 and Portugal2020. B.D.C. acknowledges FCT for a PhD grant (SFRH/BD/141936/2018)

    Magnetoliposomes containing calcium ferrite nanoparticles for applications in breast cancer therapy

    Get PDF
    Magnetoliposomes containing calcium ferrite (CaFe2O4) nanoparticles were developed and characterized for the first time. CaFe2O4 nanoparticles were covered by a lipid bilayer or entrapped in liposomes forming, respectively, solid or aqueous magnetoliposomes as nanocarriers for new antitumor drugs. The magnetic nanoparticles were characterized by UV/Visible absorption, XRD, HR-TEM, and SQUID, exhibiting sizes of 5.2 ± 1.2 nm (from TEM) and a superparamagnetic behavior. The magnetoliposomes were characterized by DLS and TEM. The incorporation of two new potential antitumor drugs (thienopyridine derivatives) specifically active against breast cancer in these nanosystems was investigated by fluorescence emission and anisotropy. Aqueous magnetoliposomes, with hydrodynamic diameters around 130 nm, and solid magnetoliposomes with sizes of ca. 170 nm, interact with biomembranes by fusion and are able to transport the antitumor drugs with generally high encapsulation efficiencies (70%). These fully biocompatible drug-loaded magnetoliposomes can be promising as therapeutic agents in future applications of combined breast cancer therapy.This research was funded by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CF-UM-UP (UID/FIS/04650/2013; UID/FIS/04650/2019), CQUM (UID/QUI/00686/2016; UID/QUI/00686/2019) and LA-26 (PEst-C/SAU/LA0026/2013), and through the research project PTDC/QUI-QFI/28020/2017 (POCI-01-0145-FEDER-028020), financed by FCT, European Fund of Regional Development (FEDER), COMPETE2020 and Portugal2020. The magnetic measurements were supported by projects UTAP-EXPL/NTec/0046/2017, NORTE-01-0145-FEDER-028538 e PTDC/FIS-MAC/29454/2017. The APC was also funded by FCT. B.D.C. acknowledges FCT for a PhD grant (SFRH/BD/141936/2018)

    Schizophrenia and work: aspects related to job acquisition in a follow-up study

    Get PDF
    Objective: Work is considered one of the main forms of social organizationhowever, few individuals with schizophrenia find work opportunities. The purpose of this study was to evaluate the relationship between schizophrenia symptoms and job acquisition. Method: Fifty-three individuals diagnosed with schizophrenia from an outpatient treatment facility were included in an 18-month follow-up study. After enrollment, they participated in a prevocational training group. At the end of training (baseline) and 18 months later, sociodemographic, clinical data and occupational history were collected. Positive and negative symptoms (Positive and Negative Syndrome Scale - PANSS), depression (Calgary Depression Scale), disease severity (Clinical Global Impression - CGI), functionality (Global Assessment of Functioning - GAF), personal and social performance (Personal and Social Performance - PSP) and cognitive functions (Measurement and Treatment Research to Improve Cognition in Schizophrenia - MATRICS battery) were applied at baseline and at the end of the study. Results: Those with some previous work experience (n = 19) presented lower scores on the PANSS, Calgary, GAF, CGI and PSP scales (p < 0.05) than those who did not work. Among those who worked, there was a slight worsening in positive symptoms (positive PANSS). Conclusions: Individuals with less severe symptoms were more able to find employment. Positive symptom changes do not seem to affect participation at workhowever, this calls for discussion about the importance of employment support.Programa de Esquizofrenia (PROESQ)Centro de Atencao Integrada a Saude Mental (CAISM)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2011/50740-5]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)FAPESPConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)CAPESUniv Fed Sao Paulo UNIFESP, Dept Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Carlos UFSCar, Dept Med, Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Terapia Ocupac, Sao Carlos, SP, BrazilFac Ciencias Med Santa Casa Sao Paulo, Dept Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Psiquiatria, Sao Paulo, SP, BrazilFAPESP [2011/50740-5]Web of Scienc

    Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption

    Get PDF
    Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent
    corecore