22 research outputs found

    ERP Modulation during Observation of Abstract Paintings by Franz Kline

    Get PDF
    The aim of this study was to test the involvement of sensorimotor cortical circuits during the beholding of the static consequences of hand gestures devoid of any meaning.In order to verify this hypothesis we performed an EEG experiment presenting to participants images of abstract works of art with marked traces of brushstrokes. The EEG data were analyzed by using Event Related Potentials (ERPs). We aimed to demonstrate a direct involvement of sensorimotor cortical circuits during the beholding of these selected works of abstract art. The stimuli consisted of three different abstract black and white paintings by Franz Kline. Results verified our experimental hypothesis showing the activation of premotor and motor cortical areas during stimuli observation. In addition, abstract works of art observation elicited the activation of reward-related orbitofrontal areas, and cognitive categorization-related prefrontal areas. The cortical sensorimotor activation is a fundamental neurophysiological demonstration of the direct involvement of the cortical motor system in perception of static meaningless images belonging to abstract art. These results support the role of embodied simulation of artist’s gestures in the perception of works of art

    Motor inhibition during overt and covert actions: An electrical neuroimaging study

    No full text
    Given ample evidence for shared cortical structures involved in encoding actions, whether or not subsequently executed, a still unsolved problem is the identification of neural mechanisms of motor inhibition, preventing "covert actions" as motor imagery from being performed, in spite of the activation of the motor system. The principal aims of the present study were the evaluation of: 1) the presence in covert actions as motor imagery of putative motor inhibitory mechanisms; 2) their underlying cerebral sources; 3) their differences or similarities with respect to cerebral networks underpinning the inhibition of overt actions during a Go/NoGo task. For these purposes, we performed a high density EEG study evaluating the cerebral microstates and their related sources elicited during two types of Go/NoGo tasks, requiring the execution or withholding of an overt or a covert imagined action, respectively. Our results show for the first time the engagement during motor imagery of key nodes of a putative inhibitory network (including pre-supplementary motor area and right inferior frontal gyrus) partially overlapping with those activated for the inhibition of an overt action during the overt NoGo condition. At the same time, different patterns of temporal recruitment in these shared neural inhibitory substrates are shown, in accord with the intended overt or covert modality of action performance. The evidence that apparently divergent mechanisms such as controlled inhibition of overt actions and contingent automatic inhibition of covert actions do indeed share partially overlapping neural substrates, further challenges the rigid dichotomy between conscious, explicit, flexible and unconscious, implicit, inflexible forms of motor behavioral control

    Reefcrete: Reducing the environmental footprint of concretes for eco-engineering marine structures

    Get PDF
    The ecological value of engineered marine structures can be enhanced by building-in additional habitat complexity. Pre-fabricated habitat units can be cheaply and easily cast from concrete into heterogeneous three-dimensional shapes and surface topographies, with proven ability to enhance biodiversity on artificial structures. The net ecological benefits of enhancement using concrete, however, may be compromised on account of its large environmental footprint and poor performance as substrate for many marine organisms. We carried out a pilot study to trial alternative cast-able “Reefcrete” concrete mixes, with reduced environmental footprints, for use in the marine environment. We used partial replacement of Portland cement with recycled ground granulated blast-furnace slag (GGBS), and partial replacement of coarse aggregate with hemp fibres and recycled shell material. We calculated the estimated carbon footprint of each concrete blend and deployed replicate tiles in the intertidal environment for 12 months to assess their performance as substrate for marine biodiversity. The hemp and shell concrete blends had reduced carbon footprints compared to both ordinary Portland cement based concrete and the GGBS based control concrete used in this study. At the end of the experiment, the hemp and shell blends supported significantly more live cover than the standard GGBS control blend. Taxon richness, particularly of mobile fauna, was also higher on the hemp concrete than either the shell or GGBS control. Furthermore, the overall species pool recorded on the hemp concrete was much larger. Community compositions differed significantly on the hemp tiles, compared to GGBS controls. This was largely explained by higher abundances of several taxa, including canopy-forming algae, which may have facilitated other taxa. Our findings indicate that the alternative materials trialled in this study provided substrate of equal or better habitat suitability compared to ordinary GGBS based concrete. Given the growing interest in ecological engineering of marine infrastructure, we propose there would be great benefit in further development of these alternative “Reefcrete” materials for wider application

    Clusters of electrodes selected for the analysis of ERP component.

    No full text
    <p>Six different clusters, of three electrodes each, have been selected: 2 frontal (red), 2 central (blue), and 2 parietal (yellow).</p

    Results of the T-test conducted on the scores of the questionnaire.

    No full text
    <p>Scores given to the “Amount of movement” and to the “Aesthetic appraisal” resulted significantly higher for the Paintings than for the Modified stimuli (p<sub>s</sub><0,01).</p

    Stimuli used in the study.

    No full text
    <p>(A) Painting stimuli: from up to bottom: 1953 Suspended; 1954 Painting number 2 and 1952 Painting Number 7 (B) Modified stimuli created removing the dynamic components of the three original paintings.</p

    ERP waveforms recorded over frontal (F3 and F4), central (C3 and C4) and parietal (P3 and P4) sites.

    No full text
    <p>The different colors indicate the 2 different Conditions: Paintings (blue line) and Modified stimuli (red line). Paintings evidently have a greater effect especially on the signal recorded on left frontal and central sites.</p

    Significant activations (p<0.01) resulted from the sLORETA source analysis.

    No full text
    <p>Coordinates are given in MNI space. Coordinates of each cortical region represent the peak voxel. The number of significant voxel in a region is identified as k.</p
    corecore