15 research outputs found

    Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.

    Get PDF
    International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice

    Efficacy and Safety of Lanreotide Autogel in the Treatment of Clinical Symptoms Associated With Inoperable Malignant Intestinal Obstruction: A Prospective Phase II Study.

    No full text
    Inoperable malignant intestinal obstruction (IMIO) is a severe complication in patients with cancer, usually gastrointestinal or gynecologic in origin. For patients with IMIO, there is a need to relieve symptoms and limit nasogastric tube (NGT) use. Previous studies have suggested the efficacy of somatostatin analogues in relieving obstruction-related symptoms, such as nausea, vomiting, and pain. The purpose of this study was to assess the efficacy of lanreotide autogel 120 mg (LAN 120 mg) in the management of symptoms resulting from IMIO in patients with advanced cancer. This single-arm, multicenter study enrolled 52 patients mostly with advanced gastrointestinal or ovarian malignant tumors (35 patients with NGT and 17 patients without NGT). Patients received 1 deep subcutaneous injection of LAN 120 mg. Evaluations were performed on days 7, 14, and 28. The primary end point was the percentage of responding patients before or at day 7. Response was defined as ≤2 vomiting episodes per day (for patients without NGT at baseline) or no vomiting recurrence (after NGT removal) during at least 3 consecutive days at any time point between treatment and day 7. Responders at day 28 were offered a second LAN 120 mg injection and followed up until day 56. The proportion of responders in the intention-to-treat population was 24 of 52 (46.2%), which was significantly greater than the reference proportion of 30% (P = 0.0055). Patients without NGT had a higher response (88.2%) than patients with NGT (25.7%) and had a steady trend for clinical improvement that led to sustainable responses. Median time to response was 9 days for the overall population, 3 days for patients without NGT, and 14 days for patients with NGT (P < 0.0001). Our study is the first to use long-acting LAN 120 mg in patients with IMIO and suggests an effect in controlling clinical symptoms in patients with and without NGT at baseline. The safety profile of LAN 120 mg was similar to that reported in other indications. ClinicalTrials.gov identifier: NCT02275338

    Transcriptome Profile During Rabies Virus Infection: Identification of Human CXCL16 as a Potential New Viral Target

    Get PDF
    International audienceRabies virus (RABV), the causative agent for rabies disease is still presenting a major public health concern causing approximately 60,000 deaths annually. This neurotropic virus (genus Lyssavirus , family Rhabdoviridae ) induces an acute and almost always fatal form of encephalomyelitis in humans. Despite the lethal consequences associated with clinical symptoms of rabies, RABV limits neuro-inflammation without causing major histopathological lesions in humans. Nevertheless, information about the mechanisms of infection and cellular response in the central nervous system (CNS) remain scarce. Here, we investigated the expression of inflammatory genes involved in immune response to RABV (dog-adapted strain Tha) in mice, the most common animal model used to study rabies. To better elucidate the pathophysiological mechanisms during natural RABV infection, we compared the inflammatory transcriptome profile observed at the late stage of infection in the mouse brain (cortex and brain stem/cerebellum) with the ortholog gene expression in post-mortem brain biopsies of rabid patients. Our data indicate that the inflammatory response associated with rabies is more pronounced in the murine brain compared to the human brain. In contrast to murine transcription profiles, we identified CXC motif chemokine ligand 16 ( CXCL16 ) as the only significant differentially expressed gene in post-mortem brains of rabid patients. This result was confirmed in vitro , in which Tha suppressed interferon alpha (IFN-α)-induced CXCL16 expression in human CNS cell lines but induced CXCL16 expression in IFN-α-stimulated murine astrocytes. We hypothesize that RABV-induced modulation of the CXCL16 pathway in the brain possibly affects neurotransmission, natural killer (NK) and T cell recruitment and activation. Overall, we show species-specific differences in the inflammatory response of the brain, highlighted the importance of understanding the potential limitations of extrapolating data from animal models to humans

    <i>SHANK</i> variants in patients with ASD and controls.

    No full text
    <p>Coding-sequence variants identified only in patients with ASD (upper panel), shared by patients and controls (lower panel and underlined), and present only in controls (lower panel). Truncating variants are indicated in red. The variants predicted as deleterious or benign are indicated in orange and green, respectively. Coding-sequence variants with a proven <i>in vitro</i> functional impact are indicated with black stars. Conserved domains are represented in color: SPN (yellow), Ankyrin (red), SH3 (orange), PDZ (blue) and SAM (green).</p

    Characterization of CNVs in three patients carrying a <i>de novo</i> deletion of <i>SHANK2</i>.

    No full text
    <p>Paternally or maternally inherited CNVs are indicated by squares and circles, respectively. <i>De novo</i> CNVs are indicated by stars. Deletions and duplications are indicated in red and blue, respectively. CNVs hitting exons or only introns are filled with grey and white, respectively. Squares and circles within star represent <i>de novo</i> CNV of paternal or maternal origin; circles within squares represent CNV inherited by father or mother. ABCC6, ATP-binding cassette, sub-family C, member 6 pseudogene 2; ADAM, ADAM metallopeptidase; AMY1, amylase (salivary); AMY2A, amylase (pancreatic); ARHGAP11B, Rho GTPase activating protein 11B; CAMSAP1L1, calmodulin regulated spectrin-associated protein 1-like 1; CHRNA7, cholinergic receptor, nicotinic, alpha 7; CNTN4, contactin 4; CTNNA3, catenin (cadherin-associated protein), alpha 3; CYFIP1, cytoplasmic FMR1 interacting protein 1; DUSP22, dual specificity phosphatase 22; GALM, galactose mutarotase; GCNT2, glucosaminyl (N-acetyl) transferase 2; GOLGA, golgi autoantigen, golgin subfamily a; GSTT1, glutathione S-transferase theta 1; HLA-DRB, major histocompatibility complex, class II, DR beta; LAMA4, laminin, alpha 4; NIPA, non imprinted in Prader-Willi/Angelman syndrome; NLGN1, neuroligin 1; NME7, non-metastatic cells 7; OR, olfactory receptor; PCDHA, protocadherin alpha; RFPL4B, ret finger protein-like 4B; RHD, Rh blood group, D antigen; SFMBT1, Scm-like with four mbt domains 1; SHANK2, SH3 and multiple ankyrin repeat domains 2; SMC2, structural maintenance of chromosomes 2; TNS3, tensin 3; TUBGCP5, tubulin, gamma complex associated protein 5; UGT2B17, UDP glucuronosyltransferase 2 family, polypeptide B17.</p

    Characterization of the functional impact of <i>SHANK2</i> mutations in cultured neuronal cells.

    No full text
    <p>A. The colocalization of <i>ProSAP1A/SHANK2</i>-EGFP (postsynaptic marker) and Bassoon (presynaptic marker) indicated that the mutations did not disturb the formation of SHANK2 clusters at excitatory synapses along the dendrites. B. The quantification of synapse density was performed on 20 transfected hippocampal neurons per construct from at least three independent experiments. The majority of the <i>ProSAP1A</i> variants affecting a conserved amino acid among SHANK proteins reduced significantly the synaptic density compared with the variants that affect amino acid non conserved among SHANK proteins (Mann-Whitney U-test: n<sub>WT</sub> = 20, n<sub>mut</sub> = 20; U<sub>S557N</sub> = 82.5, p<sub>S557N</sub> = 0.001; U<sub>R569H</sub> = 124, p<sub>R569H</sub> = 0.04; U<sub>L629P</sub> = 149, p<sub>L629P</sub> = 0.17; U<sub>V717F</sub> = 114, p<sub>V717F</sub> = 0.02; U<sub>A729T</sub> = 73, p<sub>A729T</sub> = 0.000; U<sub>K780Q</sub> = 154, p<sub>K780Q</sub> = 0.221; U<sub>R818H</sub> = 108, p<sub>R818H</sub> = 0.012; U<sub>A822T</sub> = 154.5, p<sub>A822T</sub> = 0.224; U<sub>V823M</sub> = 129, p<sub>V823M</sub> = 0.056; U<sub>Y967C</sub> = 134, p<sub>Y967C</sub> = 0.076; U<sub>G1170R</sub> = 78, p<sub>G1170R</sub> = 0.001; U<sub>R1290W</sub> = 142, p<sub>R1290W</sub> = 0.121; U<sub>Q1308R</sub> = 162, p<sub>Q1308R</sub> = 0.314; U<sub>D1535N</sub> = 97, p<sub>D1535N</sub> = 0.005; U<sub>P1586L</sub> = 137, p<sub>P1586L</sub> = 0.910; U<sub>L1722P</sub> = 79, p<sub>L1722P</sub> = 0.001, *p<0.05, **p<0.01, ***p<0.001). <b>C.</b> Effect of the variants on synaptic density. The y-axis represents −log P compared to WT (P obtained with Mann-Whitney test). After Bonferroni correction for 16 tests, only P values<0.003 were considered as significant. Variants represented in red were specific to ASD, in orange were shared by ASD and controls, and in green were specific to the controls. Open circles and filled circles represent non conserved and conserved amino acids, respectively. Prim, primary; second, secondary.</p

    Scatter plots of the intellectual quotient and the Autism Diagnostic Interview-Revised (ADI-R) scores of the patients with ASD screened for <i>SHANK1-3</i> mutations.

    No full text
    <p>Mutations in <i>SHANK1-3</i> are associated with a gradient of severity in cognitive impairment. <i>SHANK1</i> mutations were reported in patients without ID (green dots). <i>SHANK2</i> mutations were reported in patients with mild ID (orange dots). <i>SHANK3</i> mutations were found in patients with moderate to severe deficit (red dots). Black dots correspond to the patients enrolled in the PARIS cohort screened for deleterious <i>SHANK1-3</i> mutations (n = 498). In addition to the PARIS cohort <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Durand1" target="_blank">[6]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Pinto1" target="_blank">[8]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Leblond1" target="_blank">[18]</a>, three patients with a <i>SHANK1</i> deletion <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Sato1" target="_blank">[19]</a> and two patients with a <i>SHANK2</i> deletion <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Berkel1" target="_blank">[14]</a> were included in the scatter plot. A high score of the ADI-R is associated with a more severe profile. The threshold of the “Social”, “Verbal”, “Non-Verbal” and “Repetitive Behavior” Scores are 10, 8, 7 and 3, respectively.</p

    Genetic alterations identified in the control subject SWE_Q56_508.

    No full text
    <p>A. <i>SHANK2</i> splice mutation (IVS22+1G>T) detected in a Swedish female control, SWE_Q56_508. The mutation altered the donor splicing site of exon 22 and led to a premature stop in all <i>SHANK2</i> isoforms except for the <i>AF1411901</i> isoform, where it altered the protein sequence (G263V). B. CNVs in the same individual altering <i>LOC339822</i>, <i>SNTG2</i>, <i>PXDN</i> and <i>MYT1L</i>. The two close duplications span 264 kb and 245 kb on chromosome 2 and altered <i>LOC339822</i> and <i>SNTG2</i>, and <i>PXDN</i> and <i>MYT1L</i>, respectively. Dots show the B allele frequency (BAF; in green), Log R ratio (LRR; in red), and QuantiSNP score (in blue). Lower panel: all CNVs listed in the Database of Genomic Variants (DGV) are represented: loss (in red), gain (in blue), gain or loss (in brown). H, homer binding site; D, dynamin binding site; C, cortactin binding site.</p

    Prevalence and meta-analysis of coding-sequence variant studies in ASD.

    No full text
    <p>A. The prevalence and the confidence interval from a set of single coding-sequence variant studies, and the pooled prevalence and the confidence interval of the meta-analysis. The prevalence is indicated by circles in red, pink, purple and black for “ASD all” (all ASD patients), “ASD IQ<70” (patients with ID; IQ<70), “ASD IQ>70” (patients with normal IQ), and “CTRL” (controls), respectively. Three categories are used to study the prevalence of coding-sequence variants in ASD and controls: all or “A” (all mutation), Damaging or “D” (damaging missense mutation; score obtained from polyphen-2), and Truncating or “T” (mutation altering SHANK protein). The plotted circles are proportional to the corresponding sample size. B. Meta-analysis of coding-sequence variant studies altering <i>SHANK</i> genes. For each study, the Odds ratio and confidence interval is given. Each meta-analysis is calculated using inverse variance method for fixed (IV-FEM) and random effects (IV-REM). The statistics measuring heterogeneity (Q, I<sup>2</sup> and Tau<sup>2</sup>) are indicated. The number under the scatter plot correspond to independent studies: 1 = “This study”, 2 = “ Sato et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Sato1" target="_blank">[19]</a>”, 3 = “Berkel et al. (2010) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Berkel1" target="_blank">[14]</a>”, 4 = “Leblond et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Leblond1" target="_blank">[18]</a>”, 5 = “Boccuto et al. (2012) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Boccuto1" target="_blank">[17]</a>”, and 6 = “[This Study and Durand et al. 2007 <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Durand1" target="_blank">[6]</a>]”, 7 = “[Gauthier et al. (2009–2010) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Gauthier1" target="_blank">[16]</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Gauthier2" target="_blank">[47]</a>]”, 8 = “Moessner et al. (2007) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Moessner1" target="_blank">[13]</a>”, 9 = “Schaff et al. (2011) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1004580#pgen.1004580-Schaaf1" target="_blank">[35]</a>”. IV, Inverse Variance; FEM, Fixed Effect Method; REM, Random Effect Method; OR, Odds Ratio; CI, Confidence Interval; IQ, Intellectual Quotient; CNV, Copy Number Variant.</p

    Genomic structure, isoforms, and expression of human <i>SHANK2</i>.

    No full text
    <p>A. Genomic structure of the human <i>SHANK2</i> gene. Transcription of <i>SHANK2</i> produces four main mRNA from three distinct promoters: <i>SHANK2E</i> (<i>AB208025</i>), <i>ProSAP1A</i> (<i>AB208026</i>), <i>ProSAP1</i> (<i>AB208027</i>) and <i>AF141901</i>. There are three translation starts: in exon 2 for <i>SHANK2E</i>, in exon1b for <i>ProSAP1A</i>, and in exon1c for <i>ProSAP1</i> and <i>AF141901</i>; and two independent stop codons: in exon 22b for <i>AF141901</i> and in exon 25 for <i>SHANK2E</i>, <i>ProSAP1A</i> and <i>ProSAP1</i>. Conserved domains of protein interaction or protein binding site are represented in color: ANK (red), SH3 (orange), PDZ (blue) and SAM (green), H (pink), D, (dark blue) and C (purple). Black stars identify the alternative spliced exons (‘brain-specific exons’ in turquoise: 19, 20 and 23). B. RT-PCRs of <i>SHANK2</i> isoforms on RNA from different human control tissues (Clontech), and different brain regions of four controls (2 males and 2 females). The amplified regions specific to each isoform of <i>SHANK2</i> are indicated by gray boxes. C. Alternative splicing of human <i>SHANK2</i>; exons 19, 20 and 23 are specific to the brain. ANK, ankyrin; SH3, Src homology 3; PDZ, PSD95/DLG/ZO1; SAM, sterile alpha motif; He, heart; Li, liver; B, brain; SM, skeletal muscle; Pl, placenta; K, kidney; Lu, lung; Pa, pancreas; FC, frontal cortex; Hi, hippocampus; TC, temporal cortex; T, thalamus; OC, occipital cortex; Ce, cerebellum; Cx, whole cortex; BLCL, B lymphoblastoid cell lines; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; BSR, brain specific region; H, homer binding site; D, dynamin binding site; C, cortactin binding site. The ages of the two males and the two females studied were 74, 42, 55, and 36 years with a post-mortem interval of 10, 21, 24, and 2 h, respectively.</p
    corecore