50 research outputs found

    The Definition of Topological Manifolds

    Get PDF
    This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].Riccardi Marco - Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.Artur KorniƂowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.BartƂomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990

    Planes and Spheres as Topological Manifolds. Stereographic Projection

    Get PDF
    The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw ByliƄski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.CzesƂaw ByliƄski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.CzesƂaw ByliƄski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata DarmochwaƂ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata DarmochwaƂ and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.StanisƂawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniƂowicz and Yasunari Shidama. Intersections of intervals and balls in En/T Formalized Mathematics, 12(3):301-306, 2004.Artur KorniƂowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.JarosƂaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Eugeniusz Kusak, Wojciech LeoƄczuk, and MichaƂ Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Yatsuka Nakamura, Artur KorniƂowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.Henryk Oryszczyszyn and Krzysztof PraĆŒmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz Ć»ynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996

    Morphology for Image Processing. Part I

    Get PDF
    In this article we defined mathematical morphology image processing with set operations. First, we defined Minkowski set operations and proved their properties. Next, we defined basic image processing, dilation and erosion proving basic fact about them [5], [8].Yamazaki Hiroshi - Shinshu University, Nagano, JapanByliƄski CzesƂaw - University of BiaƂystok, PolandWasaki Katsumi - Shinshu University, Nagano, JapanCzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Yuzhong Ding and Xiquan Liang. Preliminaries to mathematical morphology and its properties. Formalized Mathematics, 13(2):221-225, 2005.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.H. J. A. M. Heijimans. Morphological Image Operators. Academic Press, 1994.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 2003.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990

    Small Inductive Dimension of Topological Spaces. Part II

    Get PDF
    In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.Institute of Computer Science, University of BiaƂystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Agata DarmochwaƂ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Ryszard Engelking. Teoria wymiaru. PWN, 1981.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.MirosƂaw Wysocki and Agata DarmochwaƂ. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990

    Miscellaneous Facts about Open Functions and Continuous Functions

    Get PDF
    In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.Institute of Informatics, University of BiaƂystok, Sosnowa 64, 15-887 BiaƂystok, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata DarmochwaƂ and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.StanisƂawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniƂowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Konrad Raczkowski and PaweƂ Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz Ć»ynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996

    Brouwer Fixed Point Theorem for Simplexes

    Get PDF
    In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of Δn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove the estimation of diameter decrease which is connected with the barycentric subdivision. Finally, we prove the Brouwer fixed point theorem and compute the small inductive dimension of Δn. This article is based on [16].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.CzesƂaw ByliƄski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.CzesƂaw ByliƄski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata DarmochwaƂ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.Roman Duda. Wprowadzenie do topologii. PWN, 1986.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.StanisƂawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniƂowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010, doi: 10.2478/v10037-010-0011-0.Yatsuka Nakamura, Andrzej Trybulec, and CzesƂaw ByliƄski. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.Karol Pąk. Sperner's lemma. Formalized Mathematics, 18(4):189-196, 2010, doi: 10.2478/v10037-010-0022-x.Karol Pąk. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    The Geometric Interior in Real Linear Spaces

    Get PDF
    We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosƂaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Sperner's Lemma

    Get PDF
    In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).Institute of Informatics, University of BiaƂystok, PolandBroderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Roman Duda. Wprowadzenie do topologii. PWN, 1986.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Karol Pąk. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.Karol Pąk. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185-188, 2010, doi: 10.2478/v10037-010-0021-y.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    The Real Vector Spaces of Finite Sequences are Finite Dimensional

    Get PDF
    In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.Yatsuka Nakamura - Shinshu University Nagano, JapanNagato Oya - Shinshu University Nagano, JapanYasunari Shidama - Shinshu University Nagano, JapanArtur KorniƂowicz - Institute of Computer Science, University of BiaƂystok, Sosnowa 64, 15-887 BiaƂystok, Polan

    On the Lattice of Intervals and Rough Sets

    Get PDF
    Rough sets, developed by Pawlak [6], are an important tool to describe a situation of incomplete or partially unknown information. One of the algebraic models deals with the pair of the upper and the lower approximation. Although usually the tolerance or the equivalence relation is taken into account when considering a rough set, here we rather concentrate on the model with the pair of two definable sets, hence we are close to the notion of an interval set. In this article, the lattices of rough sets and intervals are formalized. This paper, being essentially the continuation of [3], is also a step towards the formalization of the algebraic theory of rough sets, as in [4] or [9].Grabowski Adam - Institute of Mathematics, University of BiaƂystok, Akademicka 2, 15-267 BiaƂystok, PolandJastrzębska Magdalena - Institute of Mathematics, University of BiaƂystok, Akademicka 2, 15-267 BiaƂystok, PolandGrzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.CzesƂaw ByliƄski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.Amin Mousavi and Parviz Jabedar-Maralani. Relative sets and rough sets. Int. J. Appl. Math. Comput. Sci., 11(3):637-653, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Z. Pawlak. Rough sets. International Journal of Parallel Programming, 11:341-356, 1982, doi:10.1007/BF01001956.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Y. Y. Yao. Interval-set algebra for qualitative knowledge representation. Proc. 5-th Int. Conf. Computing and Information, pages 370-375, 1993.StanisƂaw Ć»ukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990
    corecore