50 research outputs found
The Definition of Topological Manifolds
This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].Riccardi Marco - Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaĆ. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata DarmochwaĆ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.Artur KorniĆowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol PÄ
k. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.BartĆomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
Planes and Spheres as Topological Manifolds. Stereographic Projection
The goal of this article is to show some examples of topological manifolds: planes and spheres in Euclidean space. In doing it, the article introduces the stereographic projection [25].Via del Pero 102, 54038 Montignoso, ItalyGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesĆaw ByliĆski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.CzesĆaw ByliĆski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.CzesĆaw ByliĆski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata DarmochwaĆ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaĆ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata DarmochwaĆ and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.StanisĆawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniĆowicz and Yasunari Shidama. Intersections of intervals and balls in En/T Formalized Mathematics, 12(3):301-306, 2004.Artur KorniĆowicz and Yasunari Shidama. Some properties of circles on the plane. Formalized Mathematics, 13(1):117-124, 2005.JarosĆaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Eugeniusz Kusak, Wojciech LeoĆczuk, and MichaĆ Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Yatsuka Nakamura, Artur KorniĆowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1-9, 2009, doi:10.2478/v10037-009-0001-2.Henryk Oryszczyszyn and Krzysztof PraĆŒmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol PÄ
k. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz ƻynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996
Morphology for Image Processing. Part I
In this article we defined mathematical morphology image processing with set operations. First, we defined Minkowski set operations and proved their properties. Next, we defined basic image processing, dilation and erosion proving basic fact about them [5], [8].Yamazaki Hiroshi - Shinshu University, Nagano, JapanByliĆski CzesĆaw - University of BiaĆystok, PolandWasaki Katsumi - Shinshu University, Nagano, JapanCzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Yuzhong Ding and Xiquan Liang. Preliminaries to mathematical morphology and its properties. Formalized Mathematics, 13(2):221-225, 2005.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.H. J. A. M. Heijimans. Morphological Image Operators. Academic Press, 1994.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 2003.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990
Small Inductive Dimension of Topological Spaces. Part II
In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.Institute of Computer Science, University of BiaĆystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.Agata DarmochwaĆ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaĆ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Ryszard Engelking. Teoria wymiaru. PWN, 1981.Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol PÄ
k. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.MichaĆ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.MirosĆaw Wysocki and Agata DarmochwaĆ. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990
Miscellaneous Facts about Open Functions and Continuous Functions
In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.Institute of Informatics, University of BiaĆystok, Sosnowa 64, 15-887 BiaĆystok, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaĆ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Agata DarmochwaĆ and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.StanisĆawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniĆowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Konrad Raczkowski and PaweĆ Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mariusz Ć»ynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996
Brouwer Fixed Point Theorem for Simplexes
In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of Δn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove the estimation of diameter decrease which is connected with the barycentric subdivision. Finally, we prove the Brouwer fixed point theorem and compute the small inductive dimension of Δn. This article is based on [16].Institute of Informatics, University of BiaĆystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.CzesĆaw ByliĆski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.CzesĆaw ByliĆski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaĆ. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata DarmochwaĆ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Agata DarmochwaĆ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562, 1991.Roman Duda. Wprowadzenie do topologii. PWN, 1986.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.StanisĆawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniĆowicz. The correspondence between n-dimensional Euclidean space and the product of n real lines. Formalized Mathematics, 18(1):81-85, 2010, doi: 10.2478/v10037-010-0011-0.Yatsuka Nakamura, Andrzej Trybulec, and CzesĆaw ByliĆski. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol PÄ
k. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.Karol PÄ
k. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Karol PÄ
k. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.Karol PÄ
k. Sperner's lemma. Formalized Mathematics, 18(4):189-196, 2010, doi: 10.2478/v10037-010-0022-x.Karol PÄ
k. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.MichaĆ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
The Geometric Interior in Real Linear Spaces
We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems
concerning these notions which are used in the theory of abstract simplicial complexes.Institute of Informatics, University of BiaĆystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosĆaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol PÄ
k. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
Sperner's Lemma
In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function Æ, which for an arbitrary vertex Ï
of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains Ï
, we can find a simplex S of B which satisfies Æ(S) = K (see [10]).Institute of Informatics, University of BiaĆystok, PolandBroderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.CzesĆaw ByliĆski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesĆaw ByliĆski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesĆaw ByliĆski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaĆ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Roman Duda. Wprowadzenie do topologii. PWN, 1986.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Adam Naumowicz. On Segre's product of partial line spaces. Formalized Mathematics, 9(2):383-390, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Beata Padlewska and Agata DarmochwaĆ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol PÄ
k. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Karol PÄ
k. Abstract simplicial complexes. Formalized Mathematics, 18(1):95-106, 2010, doi: 10.2478/v10037-010-0013-y.Karol PÄ
k. The geometric interior in real linear spaces. Formalized Mathematics, 18(3):185-188, 2010, doi: 10.2478/v10037-010-0021-y.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990
The Real Vector Spaces of Finite Sequences are Finite Dimensional
In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.Yatsuka Nakamura - Shinshu University Nagano, JapanNagato Oya - Shinshu University Nagano, JapanYasunari Shidama - Shinshu University Nagano, JapanArtur KorniĆowicz - Institute of Computer Science, University of BiaĆystok, Sosnowa 64, 15-887 BiaĆystok, Polan
On the Lattice of Intervals and Rough Sets
Rough sets, developed by Pawlak [6], are an important tool to describe a situation of incomplete or partially unknown information. One of the algebraic models deals with the pair of the upper and the lower approximation. Although usually the tolerance or the equivalence relation is taken into account when considering a rough set, here we rather concentrate on the model with the pair of two definable sets, hence we are close to the notion of an interval set. In this article, the lattices of rough sets and intervals are formalized. This paper, being essentially the continuation of [3], is also a step towards the formalization of the algebraic theory of rough sets, as in [4] or [9].Grabowski Adam - Institute of Mathematics, University of BiaĆystok, Akademicka 2, 15-267 BiaĆystok, PolandJastrzÄbska Magdalena - Institute of Mathematics, University of BiaĆystok, Akademicka 2, 15-267 BiaĆystok, PolandGrzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.CzesĆaw ByliĆski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.Amin Mousavi and Parviz Jabedar-Maralani. Relative sets and rough sets. Int. J. Appl. Math. Comput. Sci., 11(3):637-653, 2001.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Z. Pawlak. Rough sets. International Journal of Parallel Programming, 11:341-356, 1982, doi:10.1007/BF01001956.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Y. Y. Yao. Interval-set algebra for qualitative knowledge representation. Proc. 5-th Int. Conf. Computing and Information, pages 370-375, 1993.StanisĆaw Ć»ukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990