FORMALIZED MATHEMATICS Vol. 17, No. 1, Pages 1-9, 2009 DOI: 10.2478/v10037-009-0001-2

The Real Vector Spaces of Finite Sequences are Finite Dimensional

Yatsuka Nakamura Shinshu University Nagano, Japan Artur Korniłowicz Institute of Computer Science University of Białystok Sosnowa 64, 15-887 Białystok, Poland

Nagato Oya Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this paper we show the finite dimensionality of real linear spaces with their carriers equal \mathcal{R}^n . We also give the standard basis of such spaces. For the set \mathcal{R}^n we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.

MML identifier: EUCLID_7, version: 7.11.01 4.117.1046

The articles [32], [7], [11], [33], [9], [2], [8], [5], [31], [4], [6], [18], [13], [22], [20], [14], [1], [21], [29], [28], [26], [3], [23], [10], [12], [30], [19], [34], [16], [17], [25], [15], [24], and [27] provide the notation and terminology for this paper.

1. Preliminaries

We use the following convention: i, j, n are elements of \mathbb{N} , z, B_0 are sets, and f, x_0 are real-valued finite sequences.

Next we state several propositions:

- (1) For all functions f, g holds $dom(f \cdot g) = dom g \cap g^{-1}(dom f)$.
- (2) For every binary relation R and for every set Y such that rng $R \subseteq Y$ holds $R^{-1}(Y) = \text{dom } R$.

© 2009 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

- (3) Let X be a set, Y be a non empty set, and f be a function from X into Y. If f is bijective, then $\overline{\overline{X}} = \overline{\overline{Y}}$.
- $(4) \quad \langle z \rangle \cdot \langle 1 \rangle = \langle z \rangle.$
- (5) For every element x of \mathcal{R}^0 holds $x = \varepsilon_{\mathbb{R}}$.
- (6) For all elements a, b, c of \mathbb{R}^n holds (a b) + c + b = a + c.

Let f_1 , f_2 be finite sequences. One can verify that $\langle f_1, f_2 \rangle$ is finite sequence-like.

Let D be a set and let f_1 , f_2 be finite sequences of elements of D. Then $\langle f_1, f_2 \rangle$ is a finite sequence of elements of $D \times D$.

Let h be a real-valued finite sequence. Let us observe that h is increasing if and only if:

(Def. 1) For every i such that $1 \le i < \text{len } h \text{ holds } h(i) < h(i+1)$.

One can prove the following four propositions:

- (7) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If i < j and $1 \le i$ and $j \le \text{len } h$, then h(i) < h(j).
- (8) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If $i \le j$ and $1 \le i$ and $j \le \text{len } h$, then $h(i) \le h(j)$.
- (9) Let h be a natural-valued finite sequence. Suppose h is increasing. Let given i. If $1 \le i \le \text{len } h$ and $1 \le h(1)$, then $i \le h(i)$.
- (10) Let V be a real linear space and X be a subspace of V. Suppose V is strict and X is strict and the carrier of X = the carrier of V. Then X = V.

Let D be a set, let F be a finite sequence of elements of D, and let h be a permutation of dom F. The functor $F \circ h$ yields a finite sequence of elements of D and is defined as follows:

(Def. 2) $F \circ h = F \cdot h$.

One can prove the following propositions:

- (11) Let D be a non empty set and f be a finite sequence of elements of D. If $1 \le i \le \text{len } f$ and $1 \le j \le \text{len } f$, then (Swap(f, i, j))(i) = f(j) and (Swap(f, i, j))(j) = f(i).
- (12) \emptyset is a permutation of \emptyset .
- (13) $\langle 1 \rangle$ is a permutation of $\{1\}$.
- (14) For every finite sequence h of elements of \mathbb{R} holds h is one-to-one iff $\operatorname{sort}_a h$ is one-to-one.
- (15) Let h be a finite sequence of elements of \mathbb{N} . Suppose h is one-to-one. Then there exists a permutation h_3 of dom h and there exists a finite sequence h_2 of elements of \mathbb{N} such that $h_2 = h \cdot h_3$ and h_2 is increasing and dom $h = \text{dom } h_2$ and rng $h = \text{rng } h_2$.

2. Orthogonal Basis

Let B_0 be a set. We say that B_0 is \mathbb{R} -orthogonal if and only if:

(Def. 3) For all real-valued finite sequences x, y such that x, $y \in B_0$ and $x \neq y$ holds |(x,y)| = 0.

Let us observe that every set which is empty is also \mathbb{R} -orthogonal.

We now state the proposition

(16) B_0 is \mathbb{R} -orthogonal if and only if for all points x, y of $\mathcal{E}_{\mathbb{T}}^n$ such that $x, y \in B_0$ and $x \neq y$ holds x, y are orthogonal.

Let B_0 be a set. We say that B_0 is \mathbb{R} -normal if and only if:

(Def. 4) For every real-valued finite sequence x such that $x \in B_0$ holds |x| = 1.

Let us observe that every set which is empty is also \mathbb{R} -normal.

Let us observe that there exists a set which is \mathbb{R} -normal.

Let B_0 , B_1 be \mathbb{R} -normal sets. One can verify that $B_0 \cup B_1$ is \mathbb{R} -normal.

One can prove the following propositions:

- (17) If |f| = 1, then $\{f\}$ is \mathbb{R} -normal.
- (18) If B_0 is \mathbb{R} -normal and $|x_0| = 1$, then $B_0 \cup \{x_0\}$ is \mathbb{R} -normal.

Let B_0 be a set. We say that B_0 is \mathbb{R} -orthonormal if and only if:

(Def. 5) B_0 is \mathbb{R} -orthogonal and \mathbb{R} -normal.

Let us note that every set which is \mathbb{R} -orthonormal is also \mathbb{R} -orthogonal and \mathbb{R} -normal and every set which is \mathbb{R} -orthogonal and \mathbb{R} -normal is also \mathbb{R} -orthonormal.

Let us observe that $\{\langle 1 \rangle\}$ is \mathbb{R} -orthonormal.

Let us observe that there exists a set which is \mathbb{R} -orthonormal and non empty.

Let us consider n. One can verify that there exists a subset of \mathcal{R}^n which is \mathbb{R} -orthonormal.

Let us consider n and let B_0 be a subset of \mathbb{R}^n . We say that B_0 is complete if and only if:

(Def. 6) For every \mathbb{R} -orthonormal subset B of \mathbb{R}^n such that $B_0 \subseteq B$ holds $B = B_0$.

Let n be an element of \mathbb{N} and let B_0 be a subset of \mathbb{R}^n . We say that B_0 is orthogonal basis if and only if:

(Def. 7) B_0 is \mathbb{R} -orthonormal and complete.

Let us consider n. One can verify that every subset of \mathbb{R}^n which is orthogonal basis is also \mathbb{R} -orthonormal and complete and every subset of \mathbb{R}^n which is \mathbb{R} -orthonormal and complete is also orthogonal basis.

The following propositions are true:

(19) For every subset B_0 of \mathbb{R}^0 such that B_0 is orthogonal basis holds $B_0 = \emptyset$.

(20) Let B_0 be a subset of \mathbb{R}^n and y be an element of \mathbb{R}^n . Suppose B_0 is orthogonal basis and for every element x of \mathbb{R}^n such that $x \in B_0$ holds |(x,y)| = 0. Then $y = \langle \underbrace{0,\dots,0}_n \rangle$.

3. Linear Manifolds

Let us consider n and let X be a subset of \mathbb{R}^n . We say that X is linear manifold if and only if:

(Def. 8) For all elements x, y of \mathbb{R}^n and for all elements a, b of \mathbb{R} such that x, $y \in X$ holds $a \cdot x + b \cdot y \in X$.

Let us consider n. Observe that $\Omega_{\mathcal{R}^n}$ is linear manifold.

The following proposition is true

(21) $\{\langle 0, \dots, 0 \rangle\}$ is linear manifold.

Let us consider n. Observe that $\{\langle \underbrace{0,\ldots,0}_n \rangle\}$ is linear manifold. Let us consider n and let X be a subset of \mathbb{R}^n . The linear span of X yielding

a subset of \mathbb{R}^n is defined by:

(Def. 9) The linear span of $X = \bigcap \{Y \subseteq \mathbb{R}^n : Y \text{ is linear manifold } \land X \subseteq Y\}.$

Let us consider n and let X be a subset of \mathbb{R}^n . Observe that the linear span of X is linear manifold.

Let us consider n and let f be a finite sequence of elements of \mathbb{R}^n . The functor $\sum f$ yielding an element of \mathbb{R}^n is defined as follows:

- (Def. 10)(i) There exists a finite sequence g of elements of \mathbb{R}^n such that len f =len g and f(1) = g(1) and for every natural number i such that $1 \le i < j$ len f holds $g(i+1) = g_i + f_{i+1}$ and $\sum f = g(\text{len } f)$ if len f > 0,
 - (ii) $\sum f = \langle \underbrace{0, \dots, 0} \rangle$, otherwise.

Let n be a natural number and let f be a finite sequence of elements of \mathbb{R}^n . The functor accum f yields a finite sequence of elements of \mathbb{R}^n and is defined as follows:

- (Def. 11) len f = len accum f and f(1) = (accum f)(1) and for every natural number i such that $1 \le i < \text{len } f$ holds $(\text{accum } f)(i+1) = (\text{accum } f)_i + f_{i+1}$. We now state several propositions:
 - (22) For every finite sequence f of elements of \mathbb{R}^n such that len f > 0 holds $(\operatorname{accum} f)(\operatorname{len} f) = \sum f.$
 - (23) For all finite sequences F, F_2 of elements of \mathbb{R}^n and for every permutation h of dom F such that $F_2 = F \circ h$ holds $\sum F_2 = \sum F$.
 - (24) For every element k of \mathbb{N} holds $\sum k \mapsto \langle \underbrace{0, \dots, 0}_{n} \rangle = \langle \underbrace{0, \dots, 0}_{n} \rangle$.

(25) Let g be a finite sequence of elements of \mathbb{R}^n , h be a finite sequence of elements of \mathbb{N} , and F be a finite sequence of elements of \mathbb{R}^n . Suppose h is increasing and $\operatorname{rng} h \subseteq \operatorname{dom} g$ and $F = g \cdot h$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} g$ and $i \notin \operatorname{rng} h$ holds $g(i) = \langle \underbrace{0, \ldots, 0} \rangle$. Then $\sum g = \sum F$.

(26) Let
$$g$$
 be a finite sequence of elements of \mathbb{R}^n , h be a finite sequence of elements of \mathbb{N} , and F be a finite sequence of elements of \mathbb{R}^n . Suppose h is one-to-one and $\operatorname{rng} h \subseteq \operatorname{dom} g$ and $F = g \cdot h$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} g$ and $i \notin \operatorname{rng} h$ holds $g(i) = \langle \underbrace{0, \ldots, 0}_{n} \rangle$. Then

4. Standard Basis

Let us consider n, i. Then the base finite sequence of n and i is an element of \mathbb{R}^n .

The following propositions are true:

- (27) Let i_1 , i_2 be elements of \mathbb{N} . Suppose that
 - (i) $1 \le i_1$,
 - (ii) $i_1 \leq n$,
- (iii) $1 \leq i_2$,
- (iv) $i_2 \leq n$, and

 $\sum g = \sum F$.

(v) the base finite sequence of n and i_1 = the base finite sequence of n and i_2 .

Then $i_1 = i_2$.

- (28) 2 (the base finite sequence of n and i) = the base finite sequence of n and i
- (29) If $1 \le i \le n$, then \sum the base finite sequence of n and i = 1.
- (30) If $1 \le i \le n$, then | the base finite sequence of n and i = 1.
- (31) Suppose $1 \le i \le n$ and $1 \le j \le n$ and $i \ne j$. Then |(the base finite sequence of n and i, the base finite sequence of n and j)| = 0.
- (32) For every element x of \mathbb{R}^n such that $1 \le i \le n$ holds |(x, the base finite sequence of n and i)| = x(i).

Let us consider n and let x_0 be an element of \mathbb{R}^n . The functor ProjFinSeq x_0 yields a finite sequence of elements of \mathbb{R}^n and is defined by the conditions (Def. 12).

(Def. 12)(i) len ProjFinSeq $x_0 = n$, and

(ii) for every i such that $1 \le i \le n$ holds $(\operatorname{ProjFinSeq} x_0)(i) = |(x_0, \text{the base finite sequence of } n \text{ and } i)| \cdot \text{the base finite sequence of } n \text{ and } i.$

The following proposition is true

(33) For every element x_0 of \mathbb{R}^n holds $x_0 = \sum \text{ProjFinSeq } x_0$.

Let us consider n. The functor \mathbb{R} N-Base n yields a subset of \mathbb{R}^n and is defined by:

(Def. 13) \mathbb{R} N-Base $n = \{\text{the base finite sequence of } n \text{ and } i; i \text{ ranges over elements of } \mathbb{N}: 1 \leq i \wedge i \leq n\}.$

Next we state the proposition

(34) For every non zero element n of \mathbb{N} holds \mathbb{R} N-Base $n \neq \emptyset$.

Let us mention that $\mathbb{R}N$ -Base 0 is empty.

Let n be a non zero element of \mathbb{N} . Note that \mathbb{R} N-Base n is non empty.

Let us consider n. Observe that $\mathbb{R}N$ -Base n is orthogonal basis.

Let us consider n. Observe that there exists a subset of \mathbb{R}^n which is orthogonal basis.

Let us consider n. An orthogonal basis of n is an orthogonal basis subset of \mathbb{R}^n .

Let n be a non zero element of \mathbb{N} . Observe that every orthogonal basis of n is non empty.

5. FINITE REAL UNITARY SPACES AND FINITE REAL LINEAR SPACES

Let n be an element of \mathbb{N} . Observe that $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ is constituted finite sequences. Let n be an element of \mathbb{N} . One can check that every element of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ is real-valued.

Let n be an element of \mathbb{N} , let x, y be vectors of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, and let a, b be real-valued functions. One can verify that x+y and a+b can be identified when x=a and y=b.

Let n be an element of \mathbb{N} , let x be a vector of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, let y be a real-valued function, and let a, b be elements of \mathbb{R} . Observe that $a \cdot x$ and $b \cdot y$ can be identified when a = b and x = y.

Let n be an element of N, let x be a vector of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, and let a be a real-valued function. Observe that -x and -a can be identified when x = a.

Let n be an element of \mathbb{N} , let x, y be vectors of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, and let a, b be real-valued functions. One can check that x-y and a-b can be identified when x=a and y=b. The following three propositions are true:

- (35) Let n be an element of \mathbb{N} , x, y be elements of \mathcal{R}^n , and u, v be points of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$. If x = u and y = v, then $\otimes_{\mathcal{E}^n} (\langle u, v \rangle) = |(x, y)|$.
- (36) Let n, j be elements of \mathbb{N} , F be a finite sequence of elements of the carrier of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, B_2 be a subset of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, v_0 be an element of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, and l be a linear combination of B_2 . Suppose F is one-to-one and B_2 is \mathbb{R} -orthogonal and rng F = the support of l and $v_0 \in B_2$ and $j \in \text{dom}(l F)$ and $v_0 = F(j)$. Then $\otimes_{\mathcal{E}^n}(\langle v_0, \sum l F \rangle) = \otimes_{\mathcal{E}^n}(\langle v_0, l(F_j) \cdot v_0 \rangle)$.

(37) Let n be an element of \mathbb{N} , f be a finite sequence of elements of \mathcal{R}^n , and g be a finite sequence of elements of the carrier of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$. If f = g, then $\sum f = \sum g$.

Let A be a set. Note that $\mathbb{R}^A_{\mathbb{R}}$ is constituted functions.

Let us consider n. Observe that $\mathbb{R}^{\text{Seg } n}_{\mathbb{R}}$ is constituted finite sequences.

Let A be a set. One can verify that every element of $\mathbb{R}^A_{\mathbb{R}}$ is real-valued.

Let A be a set, let x, y be vectors of $\mathbb{R}^A_{\mathbb{R}}$, and let a, b be real-valued functions. Observe that x+y and a+b can be identified when x=a and y=b.

Let A be a set, let x be a vector of $\mathbb{R}^A_{\mathbb{R}}$, let y be a real-valued function, and let a, b be elements of \mathbb{R} . Observe that $a \cdot x$ and b y can be identified when a = b and x = y.

Let A be a set, let x be a vector of $\mathbb{R}^A_{\mathbb{R}}$, and let a be a real-valued function. One can check that -x and -a can be identified when x = a.

Let A be a set, let x, y be vectors of $\mathbb{R}^A_{\mathbb{R}}$, and let a, b be real-valued functions. Observe that x-y and a-b can be identified when x=a and y=b.

The following propositions are true:

- (38) Let X be a subspace of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$, x be an element of \mathbb{R}^n , and a be a real number. If $x \in \text{the carrier of } X$, then $a \cdot x \in \text{the carrier of } X$.
- (39) Let X be a subspace of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$ and x, y be elements of \mathbb{R}^n . Suppose $x \in \text{the carrier of } X$ and $y \in \text{the carrier of } X$. Then $x + y \in \text{the carrier of } X$.
- (40) Let X be a subspace of $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$, x, y be elements of \mathbb{R}^n , and a, b be real numbers. Suppose $x \in$ the carrier of X and $y \in$ the carrier of X. Then $a \cdot x + b \cdot y \in$ the carrier of X.
- (41) For all elements x, y of \mathbb{R}^n and for all points u, v of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$ such that x = u and y = v holds $\otimes_{\mathcal{E}^n}(\langle u, v \rangle) = |(x, y)|$.
- (42) Let F be a finite sequence of elements of the carrier of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$, B_2 be a subset of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$, v_0 be an element of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$, and l be a linear combination of B_2 . Suppose F is one-to-one and B_2 is \mathbb{R} -orthogonal and $\operatorname{rng} F = \operatorname{the}$ support of l and $v_0 \in B_2$ and $j \in \operatorname{dom}(l F)$ and $v_0 = F(j)$. Then $\otimes_{\mathcal{E}^n}(\langle v_0, \sum l F \rangle) = \otimes_{\mathcal{E}^n}(\langle v_0, l(F_j) \cdot v_0 \rangle)$.

Let us consider n. Note that every subset of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$ which is \mathbb{R} -orthonormal is also linearly independent.

Let n be an element of \mathbb{N} . Note that every subset of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ which is \mathbb{R} -orthonormal is also linearly independent. Next we state the proposition

(43) Let B_2 be a subset of $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$, x, y be elements of \mathbb{R}^n , and a be a real number. If B_2 is linearly independent and x, $y \in B_2$ and $y = a \cdot x$, then x = y.

6. Finite Dimensionality of the Spaces

Let us consider n. One can check that $\mathbb{R}N$ -Base n is finite. The following propositions are true:

- (44) $\operatorname{card} \mathbb{R} \operatorname{N-Base} n = n.$
- (45) Let f be a finite sequence of elements of \mathbb{R}^n and g be a finite sequence of elements of the carrier of $\mathbb{R}^{\mathrm{Seg }n}_{\mathbb{R}}$. If f=g, then $\sum f=\sum g$.
- (46) Let x_0 be an element of $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$ and B be a subset of $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$. If $B = \mathbb{R}$ N-Base n, then there exists a linear combination l of B such that $x_0 = \sum l$.
- (47) Let n be an element of \mathbb{N} , x_0 be an element of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$, and B be a subset of $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$. If $B = \mathbb{R}$ N-Base n, then there exists a linear combination l of B such that $x_0 = \sum l$.
- (48) For every subset B of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ such that $B = \mathbb{R}$ N-Base n holds B is a basis of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$.

Let us consider n. Observe that $\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}$ is finite dimensional.

We now state several propositions:

- (49) $\dim(\mathbb{R}^{\operatorname{Seg} n}_{\mathbb{R}}) = n.$
- (50) For every subset B of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$ such that B is a basis of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$ holds $\overline{\overline{B}} = n$.
- (51) \emptyset is a basis of $\mathbb{R}^{\text{Seg }0}_{\mathbb{R}}$.
- (52) For every element n of \mathbb{N} holds \mathbb{R} N-Base n is a basis of $\langle \mathcal{E}^n, (\cdot | \cdot) \rangle$.
- (53) Every orthogonal basis of n is a basis of $\mathbb{R}^{\text{Seg }n}_{\mathbb{R}}$.

Let n be an element of N. Note that $\langle \mathcal{E}^n, (\cdot|\cdot) \rangle$ is finite dimensional.

We now state two propositions:

- (54) For every element n of \mathbb{N} holds $\dim(\langle \mathcal{E}^n, (\cdot|\cdot) \rangle) = n$.
- (55) For every orthogonal basis B of n holds $\overline{\overline{B}} = n$.

References

- [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179–183, 2003.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [12] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411–415, 1997.
- [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23–28, 2003.
- [16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Linear combinations in real unitary space. Formalized Mathematics, 11(1):17–22, 2003.
- [17] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [19] Yatsuka Nakamura. Sorting operators for finite sequences. Formalized Mathematics, 12(1):1–4, 2004.
- [20] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [23] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127–136, 2007, doi:10.2478/v10037-007-00014-7.
- [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847–850, 1990.
- [27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [28] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581–588, 1990.
- [29] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297–301, 1990.
- [30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [34] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471–474, 2001.

Received September 23, 2008