1,036 research outputs found

    The FHD/ε\boldsymbol{\varepsilon}ppsilon Epoch of Reionization Power Spectrum Pipeline

    Full text link
    Epoch of Reionization data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work, we build a signal path framework to mathematically describe each step in the analysis, from data reduction in the FHD package to power spectrum generation in the ε\varepsilonppsilon package. In particular, we focus on the distinguishing characteristics of FHD/ε\varepsilonppsilon: highly accurate spectral calibration, extensive data verification products, and end-to-end error propagation. We present our key data analysis products in detail to facilitate understanding of the prominent systematics in image-based power spectrum analyses. As a verification to our analysis, we also highlight a full-pipeline analysis simulation to demonstrate signal preservation and lack of signal loss. This careful treatment ensures that the FHD/ε\varepsilonppsilon power spectrum pipeline can reduce radio interferometric data to produce credible 21 cm EoR measurements.Comment: 21 pages, 10 figures, accepted by PAS

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing

    A Spectroscopic Study of Field and Runaway OB Stars

    Full text link
    Identifying binaries among runaway O- and B-type stars offers valuable insight into the evolution of open clusters and close binary stars. Here we present a spectroscopic investigation of 12 known or suspected binaries among field and runaway OB stars. We find new orbital solutions for five single-lined spectroscopic binaries (HD 1976, HD 14633, HD 15137, HD 37737, and HD 52533), and we classify two stars thought to be binaries (HD 30614 and HD 188001) as single stars. In addition, we reinvestigate their runaway status using our new radial velocity data with the UCAC2 proper motion catalogs. Seven stars in our study appear to have been ejected from their birthplaces, and at least three of these runaways are spectroscopic binaries and are of great interest for future study.Comment: 21 pages, 1 figure, 7 tables; Accepted to Ap

    A high-resolution bathymetry map for the Marguerite Bay and adjacent west Antarctic Peninsula shelf for the Southern Ocean GLOBEC Program

    Get PDF
    One objective of the U.S. Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) program is to gain a better understanding of the sea floor bathymetry in the program study area. Much of Marguerite Bay and the adjacent shelf west of the Antarctic Peninsula were poorly charted when the SO GLOBEC program started in 2000. Before the first SO GLOBEC cruise, an improved local area version (ETOPO8.2A) was created from the Smith and Sandwell (1997) topo_8.2.img 2-minute digital gridded bathymetry for the study area. The first SO GLOBEC mooring cruise on the R/V Lawrence M. Gould (March 2001) showed that the 2-minute spatial resolution of ETOPO8.2A did not resolve many of the canyons and abrupt changes in topography that characterize Marguerite Bay and the inner- to mid-shelf region. It also was not particularly accurate in the more uniform terrain regions. We then decided to collect as much multibeam bathymetry data as possible during the SO GLOBEC broad-scale survey cruises on the R/VIB Nathaniel B. Palmer and combine these data with all other available multibeam and trackline bathymetry data to construct a digital bathymetry database and map for the study area. The resulting database has high-resolution data over much of the shelf and parts of Marguerite Bay gridded at 2 seconds in latitude and 6 seconds in longitude spacing between 65° to 71° S and 65° to 78° W. This technical report describes the steps taken to assemble and construct this database and how to access the data via the Internet.Funding was provided by the Office of Naval Research under Contract No. N00014-99-1-0213

    Multilevel information storage using magnetoelastic layer stacks

    Get PDF
    The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium, has been shown to be a highly suitable material for such devices because it possesses biaxial anisotropy and large magnetostriction. Here we experimentally investigate the properties of galfenol/spacer/galfenol structures in which the compositions of the galfenol layers are varied in order to produce different strengths of the magnetic anisotropy and magnetostriction constants. Based upon these layers, we propose and simulate the operation of an information storage device that can operate as an energy efficient multilevel memory cell

    Northern Monterey Bay upwelling shadow front : observations of a coastally and surface-trapped buoyant plume

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C12013, doi:10.1029/2009JC005623.During the upwelling season in central California, northwesterly winds along the coast produce a strong upwelling jet that originates at Point Año Nuevo and flows southward across the mouth of Monterey Bay. A convergent front with a mean temperature change of 3.77 ± 0.29°C develops between the warm interior waters and the cold offshore upwelling jet. To examine the forcing mechanisms driving the location and movement of the upwelling shadow front and its effects on biological communities in northern Monterey Bay, oceanographic conditions were monitored using cross-shelf mooring arrays, drifters, and hydrographic surveys along a 20 km stretch of coast extending northwestward from Santa Cruz, California, during the upwelling season of 2007 (May–September). The alongshore location of the upwelling shadow front at the northern edge of the bay was driven by: regional wind forcing, through an alongshore pressure gradient; buoyancy forces due to the temperature change across the front; and local wind forcing (the diurnal sea breeze). The upwelling shadow front behaved as a surface-trapped buoyant current, which is superimposed on a poleward barotropic current, moving up and down the coast up to several kilometers each day. We surmise that the front is advected poleward by a preexisting northward barotropic current of 0.10 m s−1 that arises due to an alongshore pressure gradient caused by focused upwelling at Point Año Nuevo. The frontal circulation (onshore surface currents) breaks the typical two-dimensional wind-driven, cross-shelf circulation (offshore surface currents) and introduces another way for water, and the material it contains (e.g., pollutants, larvae), to go across the shelf toward shore.Funded primarily by the Gordon and Betty Moore Foundation and the David and Lucile Packard Foundation

    The 1995 Georges Bank Stratification Study and moored array measurements

    Get PDF
    The 1995 Geoges Bank Stratification Study (GBSS) was the first intensive process study conducted as part of the U.S. GLOBEC Northwest Atlantic/Georges Bank field program. The GBSS was designed to investigate the physical processes which control the seasonal development of stratification along the southern flank of Georges Bank during spring and summer. Past work suggested that during this period, larval cod and haddock tended to aggregate to the thermocline on the southern flank where higher concentrations of their copepod prey were found. A moored array was deployed as part of GBSS to observe the onset and evolution of sesonal stratification over the southern flank with sufficient vertical and horizontal resolution that key physical processes could be identified and quantified. Moored current, temperature, and conductivity (salinity) measurements were made at three sites along the southern flank, one on the crest, and one on the northeast peak of the bank. Moored surface meteorological measurements were also made at one southern flank site to determine the surface wind stress and heat and moisture fluxes. The oceanographic and meteorological data collected with the GBSS array during January-August 1995 are presented in this report. Meteorological data collected on National Data Buoy Center environmental buoys 44011 (Georges Bank), 44008 (Nantucket Shoals), and 44005 (Gulf of Maine) are included in this report for completeness and comparison with the GBSS southern flank meteorological measurements.Funding was provided by the National Science Foundation under Grant Numbers OCE-98-06379 and OCE-98-06445

    A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    Get PDF
    Author Posting. © American Meteorological Society 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 22 (2005): 583–591, doi:10.1175/JTECH1731.1.The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100–200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements.A. Scotti was partially supported by ONR Grants N00014-03-1-0553 and N00014-01-1- 0172, B. Butman and P. Alexander by the U.S. Geological Survey, and R. Beardsley by the WHOI Smith Chair and ONR Grant N00014-98-1-0210. S. Anderson received partial support from ONR (Grant N00014-97- 1-0158). The Massachusetts Bay Internal Wave Experiment was jointly supported by ONR and USGS

    The EoR Sensitivity of the Murchison Widefield Array

    Get PDF
    Using the final 128 antenna locations of the Murchison Widefield Array (MWA), we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum of red- shifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS Letters. Supplementary material will be available in the published version, or by contacting the author
    • …
    corecore