4,560 research outputs found
(Anti)Proton and Pion Source Sizes and Phase Space Densities in Heavy Ion Collisions
NA44 has measured mid-rapidity deuteron spectra from AA collisions at
sqrt{s}=18GeV/A at the CERN SPS. Combining these spectra with published proton,
antiproton and antideuteron data allows us to calculate, within a coalescence
framework, proton and antiproton source sizes and phase space densities. These
results are compared to pion source sizes and densities, pA results and to
lower energy (AGS) data. The antiproton source is larger than the proton source
at sqrt{s}=18GeV/A. The phase space densities of pions and protons are not
constant but grow with system size. Both pi+ and proton radii decrease with
transverse mass and increase with sqrt{s}. Pions and protons do not freeze-out
independently. The nature of their interaction changes as sqrt{s}, and the
pion/proton ratio increases.Comment: 4 pages, Latex 2.09, 3 eps figures. Changes for January 2001. The
proton source size is now calculated assuming a more realistic Hulthen,
rather than Gaussian, wavefunction. A new figure shows the effect of this
change which is important for small radii. A second new figure shows the
results of RQMD calculations of the proton source size and phase density.
Because of correlations between position and momentum coalesence does not
show the full proton source size. The paper has been streamlined and
readability improve
BRAHMS Overview
A brief review of BRAHMS measurements of bulk particle production in RHIC
Au+Au collisions at is presented, together with some
discussion of baryon number transport. Intermediate measurements in
different collision systems (Au+Au, d+Au and p+p) are also discussed in the
context of jet quenching and saturation of the gluon density in Au ions at RHIC
energies. This report also includes preliminary results for identified
particles at forward rapidities in d+Au and Au+Au collisions.Comment: 8 pages 6 figures, Invited plenary talk at 5th International
Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2005),
Salt Lake City, Kolkata, India, 8-12 Feb 200
Two-kaon correlations in central Pb + Pb collisions at 158 A GeV/c
Two-particle interferometry of positive kaons is studied in Pb + Pb
collisions at mean transverse momenta and 0.91 GeV/c. A
three-dimensional analysis was applied to the lower data, while a
two-dimensional analysis was used for the higher data. We find that the
source size parameters are consistent with the scaling curve observed in
pion correlation measurements in the same collisions, and that the duration
time of kaon emission is consistent with zero within the experimental
sensitivity.Comment: 4 pages incl. 1 table and 3 fig's; RevTeX; accepted for publication
in PR
Pathogenic Variants in Fucokinase Cause a Congenital Disorder of Glycosylation
FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway
On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions
Within a hydrodynamical approach we investigate the sensitivity of single
inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three
different equations of state of nuclear matter. Two of the equations of state
are based on lattice QCD results and include a phase transition to a
quark-gluon plasma. The third equation of state has been extracted from the
microscopic transport code RQMD under the assumption of complete local
thermalization. All three equations of state provide reasonable fits to data
taken by the NA44 and NA49 Collaborations. The initial conditions before the
evolution of the fireballs and the space-time evolution pictures differ
dramatically for the three equations of state when the same freeze-out
temperature is used in all calculations. However, the softest of the equations
of state results in transverse mass spectra that are too steep in the central
rapidity region. We conclude that the transverse particle momenta are
determined by the effective softness of the equation of state during the
fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of
the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm
Production of gluons in the classical field model for heavy ion collisions
The initial stages of relativistic heavy ion collisions are studied
numerically in the framework of a 2+1 dimensional classical Yang-Mills theory.
We calculate the energy and number densities and momentum spectra of the
produced gluons. The model is also applied to non central collisions. The
numerical results are discussed in the light of RHIC measurements of energy and
multiplicity and other theoretical calculations. Some problems of the present
approach are pointed out.Comment: 9 pages, 11 figures, RevTeX; error in eq. (11) corrected, figures
clarified, published in Phys. Rev.
The New Physics at RHIC. From Transparency to High p Suppression
Heavy ion collisions at RHIC energies (Au+Au collisions at
GeV) exhibit significant new features as compared to
earlier experiments at lower energies. The reaction is characterized by a high
degree of transparency of the collisions partners leading to the formation of a
baryon-poor central region. In this zone, particle production occurs mainly
from the stretching of the color field. The initial energy density is well
above the one considered necessary for the formation of the Quark Gluon Plasma,
QGP. The production of charged particles of various masses is consistent with
chemical and thermal equilibrium. Recently, a suppression of the high
transverse momentum component of hadron spectra has been observed in central
Au+Au collisions. This can be explained by the energy loss experienced by
leading partons in a medium with a high density of unscreened color charges. In
contrast, such high jets are not suppressed in d+Au collisions suggesting
that the high suppression is not due to initial state effects in the
ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at
'Nucleus-Nucleus Collisions 2003' conference, Mosco
Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV
We present spectra of charged pions and protons in 0-10% central Au+Au
collisions at GeV at mid-rapidity () and forward
pseudorapidity () measured with the BRAHMS experiment at RHIC. The
spectra are compared to spectra from p+p collisions at the same energy scaled
by the number of binary collisions. The resulting nuclear modification factors
for central Au+Au collisions at both and exhibit suppression
for charged pions but not for (anti-)protons at intermediate . The
ratios have been measured up to GeV/ at the two
rapidities and the results indicate that a significant fraction of the charged
hadrons produced at intermediate range are (anti-)protons at both
mid-rapidity and
Emission times and opacities from interferometry in non-central Relativistic Nuclear Collisions
The nuclear overlap zone in non-central relativistic heavy ion collisions is
azimuthally very asymmetric. By varying the angle between the axes of
deformation and the transverse direction of the pair momenta, the transverse
HBT radii oscillate in a characteristic way. It is shown that these
oscillations allow determination of source sizes, deformations as well as the
opacity and duration of emission of the source created in any non-central high
energy nuclear collisions. The behavior of the physical quantities with
centrality of the collisions is discussed --- in particular changes caused by a
possible phase transition to a quark-gluon plasma.Comment: Revised version, to appear in Phys. Rev. Letter
- …