73 research outputs found

    Compton scattering on the proton, neutron, and deuteron in chiral perturbation theory to O(Q^4)

    Full text link
    We study Compton scattering in systems with A=1 and 2 using chiral perturbation theory up to fourth order. For the proton we fit the two undetermined parameters in the O(Q^4) γ\gammap amplitude of McGovern to experimental data in the region ω,t180\omega,\sqrt{|t|} \leq 180 MeV, obtaining a chi^2/d.o.f. of 133/113. This yields a model-independent extraction of proton polarizabilities based solely on low-energy data: alpha_p=12.1 +/- 1.1 (stat.) +/- 0.5 (theory) and beta_p=3.4 +/- 1.1 (stat.) +/- 0.1 (theory), both in units of 10^{-4} fm^3. We also compute Compton scattering on deuterium to O(Q^4). The γ\gammad amplitude is a sum of one- and two-nucleon mechanisms, and contains two undetermined parameters, which are related to the isoscalar nucleon polarizabilities. We fit data points from three recent γ\gammad scattering experiments with a chi^2/d.o.f.=26.6/20, and find alpha_N=13.0 +/- 1.9 (stat.) +3.9/-1.5 (theory) and a beta_N that is consistent with zero within sizeable error bars.Comment: 57 pages, 16 figures. Substantial changes. Correction of errors in deuteron calculation results in different values for isoscalar polarizabilities. Results for the proton are unaffected. Text modified to reflect this change, and also to clarify various point

    Unitarized Chiral Perturbation Theory in a finite volume: scalar meson sector

    Get PDF
    We develop a scheme for the extraction of the properties of the scalar mesons f0(600), f0(980), and a0(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multi-channel scattering.Comment: 15 pages, 17 figure

    Scalar mesons moving in a finite volume and the role of partial wave mixing

    Get PDF
    Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with nonzero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I=0 and I=1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure

    Insecticide use and breast cancer risk among farmers’ wives in the agricultural health study

    Get PDF
    BACKGROUND: Some epidemiologic and laboratory studies suggest that insecticides are related to increased breast cancer risk, but the evidence is inconsistent. Women engaged in agricultural work or who reside in agricultural areas may experience appreciable exposures to a wide range of insecticides. OBJECTIVE: We examined associations between insecticide use and breast cancer incidence among wives of pesticide applicators (farmers) in the prospective Agricultural Health Study. METHODS: Farmers and their wives provided information on insecticide use, demographics, and reproductive history at enrollment in 1993–1997 and in 5-y follow-up interviews. Cancer incidence was determined via cancer registries. Among 30,594 wives with no history of breast cancer before enrollment, we examined breast cancer risk in relation to the women’s and their husbands’ insecticide use using Cox proportional hazards regression to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During an average 14.7-y follow-up, 39% of the women reported ever using insecticides, and 1,081 were diagnosed with breast cancer. Although ever use of insecticides overall was not associated with breast cancer risk, risk was elevated among women who had ever used the organophosphates chlorpyrifos [HR = 1:4 (95% CI: 1.0, 2.0)] or terbufos [HR = 1:5 (95% CI: 1.0, 2.1)], with nonsignificantly increased risks for coumaphos [HR = 1:5 (95% CI: 0.9, 2.5)] and heptachlor [HR = 1:5 (95% CI: 0.7, 2.9)]. Risk in relation to the wives’ use was associated primarily with premenopausal breast cancer. We found little evidence of differential risk by tumor estrogen receptor status. Among women who did not apply pesticides, the husband’s use of fonofos was associated with elevated risk, although no exposure–response trend was observed. CONCLUSION: Use of several organophosphate insecticides was associated with elevated breast cancer risk. However, associations for the women’s and husbands’ use of these insecticides showed limited concordance. Ongoing cohort follow-up may help clarify the relationship, if any, between individual insecticide exposures and breast cancer risk

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Drum vortons in high density QCD

    Get PDF
    Recently it was shown that high density QCD supports of number of topological defects. In particular, there are U(1)_Y strings that arise due to K^0 condensation that occurs when the strange quark mass is relatively large. The unique feature of these strings is that they possess a nonzero K^+ condensate that is trapped on the core. In the following we will show that these strings (with nontrivial core structure) can form closed loops with conserved charge and currents trapped on the string worldsheet. The presence of conserved charges allows these topological defects, called vortons, to carry angular momentum, which makes them classically stable objects. We also give arguments demonstrating that vortons carry angular momentum very efficiently (in terms of energy per unit angular momentum) such that they might be the important degrees of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review

    The hyperon-nucleon interaction: conventional versus effective field theory approach

    Get PDF
    Hyperon-nucleon interactions are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. With regard to meson-exchange hyperon-nucleon models we focus on the new potential of the Juelich group, whose most salient feature is that the contributions in the scalar--isoscalar (\sigma) and vector--isovector (\rho) exchange channels are constrained by a microscopic model of correlated \pi\pi and KKbar exchange.Comment: 28 pages, 8 figures, submitted to Lecture Notes in Physic

    SO(2,1) conformal anomaly: Beyond contact interactions

    Get PDF
    The existence of anomalous symmetry-breaking solutions of the SO(2,1) commutator algebra is explicitly extended beyond the case of scale-invariant contact interactions. In particular, the failure of the conservation laws of the dilation and special conformal charges is displayed for the two-dimensional inverse square potential. As a consequence, this anomaly appears to be a generic feature of conformal quantum mechanics and not merely an artifact of contact interactions. Moreover, a renormalization procedure traces the emergence of this conformal anomaly to the ultraviolet sector of the theory, within which lies the apparent singularity.Comment: 11 pages. A few typos corrected in the final versio

    Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons

    Full text link
    The Effective Field Theory "without pions" at next-to-leading order is used to analyze universal bound state and scattering properties of the 3- and 4-nucleon system. Results of a variety of phase shift equivalent nuclear potentials are presented for bound state properties of 3H and 4He, and for the singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are performed with the Refined Resonating Group Method and include a full treatment of the Coulomb interaction and the leading-order 3-nucleon interaction. The results compare favorably with data and values from AV18(+UIX) model calculations. A new correlation between a_0(3He-n) and the 3H binding energy is found. Furthermore, we confirm at next-to-leading order the correlations, already found at leading-order, between the 3H binding energy and the 3H charge radius, and the Tjon line. With the 3H binding energy as input, we get predictions of the Effective Field Theory "without pions" at next-to-leading order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the 4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm 0.6)fm. Including the Coulomb interaction, the splitting in binding energy between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data of (0.10\mp 0.03) MeV is model independently attributed to higher order charge independence breaking interactions. We also demonstrate that different results for the same observable stem from higher order effects, and carefully assess that numerical uncertainties are negligible. Our results demonstrate the convergence and usefulness of the pion-less theory at next-to-leading order in the 4He channel. We conclude that no 4-nucleon interaction is needed to renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with includegraphicx, leading-order results added, calculations include the LO three-nucleon interaction explicitly, comment on Wigner bound added, minor modification

    Downgraded curriculum? An analysis of knowledge in new curricula in Scotland and New Zealand

    Get PDF
    The development, since 2000, of new National Curricula across the Anglophone world signals a number of policy trends, including: a move from the explicit specification of content towards a more generic, skills-based approach; a greater emphasis on the centrality of the learner; and [ostensibly] greater autonomy for teachers in developing the curriculum in school. These policy shifts have attracted some criticism, especially from social realist writers, who claim that the new curricula downgrade knowledge. This paper offers a contribution to this debate; an empirically-based analysis of two new curricula, New Zealand’s Curriculum Framework and Scotland’s Curriculum for Excellence. We conclude that, while these curricula continue to accord considerable importance to knowledge in their statements of policy intent, the social realist critique is at least partially justified, since both curricula are characterised by a lack of coherence and mixed messages about the place of knowledge
    corecore