11,505 research outputs found

    The Role of Executive Control Deficits in Cognitive Correlates of Dysphoria

    Get PDF
    Recent research has suggested that deficits in executive control, especially impairments in cognitive inhibition, as well as rumination, negative involuntary memories, and reduced autobiographical memory specificity could play key roles in the development and exacerbation of depressive symptoms. In the present study, participants completed the Negative Affective Priming (NAP) task, the Ruminative Responses Scale (RRS), the Continuous Word Association Task (CWAT), the Autobiographical Memory Task (AMT), and the Center for Epidemiologic Studies Depression Scale Revised (CESD-R) to examine the relationship between deficits in executive control and dysphoria that may be mediated by ruminative thinking, negative involuntary memory retrieval, and autobiographical memory specificity. Executive control deficits and greater ruminative tendencies were found in the dysphoric sample relative to controls, although there was no evidence to support differences in involuntary memory retrieval or memory specificity. Furthermore, rumination, especially brooding rumination, was found to mediate the relationship between executive control deficits and dysphoria. Although the NAP task seems to measure some aspect of executive control, the results suggested that the task itself warrants further scrutiny

    Vector magnetic hysteresis of hard superconductors

    Full text link
    Critical state problems which incorporate more than one component for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C[H⃗(x⃗)]{\cal C}[\vec{H}(\vec{x})] which weighs the changes of the magnetic field vector within the sample. We show that Bean's simplest prescription of choosing the correct sign for the critical current density JcJ_c in one dimensional problems is just a particular case of finding the components of the vector J⃗c\vec{J}_c. J⃗c\vec{J}_c is determined by minimizing C{\cal C} under the constraint J⃗∈Δ(H⃗,x⃗)\vec{J}\in\Delta (\vec{H},\vec{x}), with Δ\Delta a bounded set. Upon the selection of different sets Δ\Delta we discuss existing crossed field measurements and predict new observable features. It is shown that a complex behavior in the magnetization curves may be controlled by a single external parameter, i.e.: the maximum value of the applied magnetic field HmH_m.Comment: 10 pages, 9 figures, accepted in Phys. Rev.

    The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    Full text link
    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio

    Spectroscopic binaries in the Solar Twin Planet Search program: from substellar-mass to M dwarf companions

    Get PDF
    Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program we observed several solar twin binaries, and found a multiplicity fraction of 42%±6%42\% \pm 6\% in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.060.06 M⊙_\odot brown dwarf in a 1-month long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.Comment: 13 pages, 7 figures, accepted for publication in MNRA

    The Adiabatic Instability on Cosmology's Dark Side

    Full text link
    We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur

    Population projections for Pakistan 1960-2000

    Get PDF

    Evolution of the fishtail-effect in pure and Ag-doped MG-YBCO

    Full text link
    We report on magnetic measurements carried out in a textured YBa2_2Cu3_3O7−ή_{7-\delta} and YBa2_2(Cu1−x_{1-x}Agx_x)3_3O7−ή_{7-\delta} (at x≈x \approx 0.02) crystals. The so-called fishtail-effect (FE) or second magnetization peak has been observed in a wide temperature range 0.4~<T/Tc<<T/T_c<~0.8 for H∄c\textbf{H}\parallel c. The origin of the FE arises for the competition between surface barrier and bulk pinning. This is confirmed in a non-monotonically behavior of the relaxation rate RR. The value HmaxH_{max} for Ag-doped crystals is larger than for the pure one due to the presence of additional pinning centers, above all on silver atoms.Comment: 6 pages, 6 figure

    Detecting Planets Around Very Low Mass Stars with the Radial Velocity Method

    Full text link
    The detection of planets around very low-mass stars with the radial velocity method is hampered by the fact that these stars are very faint at optical wavelengths where the most high-precision spectrometers operate. We investigate the precision that can be achieved in radial velocity measurements of low mass stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the precision achievable in the optical. For early-M stars, radial velocity measurements in the nIR offer no or only marginal advantage in comparison to optical measurements. Although they emit more flux in the nIR, the richness of spectral features in the optical outweighs the flux difference. We find that nIR measurement can be as precise than optical measurements in stars of spectral type ~M4, and from there the nIR gains in precision towards cooler objects. We studied potential calibration strategies in the nIR finding that a stable spectrograph with a ThAr calibration can offer enough wavelength stability for m/s precision. Furthermore, we simulate the wavelength-dependent influence of activity (cool spots) on radial velocity measurements from optical to nIR wavelengths. Our spot simulations reveal that the radial velocity jitter does not decrease as dramatically towards longer wavelengths as often thought. The jitter strongly depends on the details of the spots, i.e., on spot temperature and the spectral appearance of the spot. Forthcoming nIR spectrographs will allow the search for planets with a particular advantage in mid- and late-M stars. Activity will remain an issue, but simultaneous observations at optical and nIR wavelengths can provide strong constraints on spot properties in active stars.Comment: accepted by ApJ, v2 accepted revision with new precision calculations, abstract abride
    • 

    corecore