159 research outputs found

    Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

    Get PDF
    High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude

    Impact of Visual Repetition Rate on Intrinsic Properties of Low Frequency Fluctuations in the Visual Network

    Get PDF
    BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains

    Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva.</p> <p>Methods</p> <p>Saliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP) in the catechol-<it>0</it>-methyltransferase gene (COMT rs4680) and one representative variable number of tandem repeats (VNTR) in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region) were selected for genetic analyses.</p> <p>Results</p> <p>The smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days), repeated freeze-thaw cycles (up to 6 cycles), and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible.</p> <p>Conclusions</p> <p>Whole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using 10 ng of DNA per genotyping reaction, the obtained samples can be used for more than one hundred candidate gene assays. When saliva is collected with an absorbent device, most of the nucleic acid content remains in the device, therefore it is advisable to collect the device separately for later genetic analyses.</p

    Immediate thoracotomy for penetrating injuries: Ten years' experience at a Dutch level I trauma center

    Get PDF
    Background: An emergency department thoracotomy (EDT) or an emergency thoracotomy (ET) in the operating theater are both beneficial in selected patients following thoracic penetrating injuries. Since outcome-descriptive European studies are lacking, the aim of this retrospective study was to evaluate ten years of experience at a Dutch level I trauma center. Method: Data on patients who underwent an immediate thoracotomy after sustaining a penetrating thoracic injury between October 2000 and January 2011 were collected from the trauma registry and hospital files. Descriptive and univariate analyses were performed. Results: Among 56 patients, 12 underwent an EDT and 44 an ET. Forty-six patients sustained one or multiple stab wounds, versus ten with one or multiple gunshot wounds. Patients who had undergone an EDT had a lower GCS (p < 0. 001), lower pre-hospital RTS and hospital triage RTS (p < 0. 001 and p = 0. 009, respectively), and a lower SBP (p = 0. 038). A witnessed loss of signs of life generally occurred in EDT patients and was accompanied by 100 % mortality. Survival following EDT was 25 %, which was significantly lower than in the ET group (75 %; p = 0. 002). Survivors had lower ISS (p = 0. 011), lower rates of pre-hospital (p = 0. 031) and hospital (p = 0. 003) hemodynamic instability, and a lower prevalence of concomitant abdominal injury (p = 0. 002). Conclusion: The overall survival rate in our study was 64 %. The outcome of immediate thoracotomy performed in this level I trauma center was similar to those obtained in high-incidence regions like the US and South Africa. This suggests that trauma units where immediate thoracotomies are not part of the daily routine can achieve similar results, if properly trained

    Monitoring the Long-Term Molecular Epidemiology of the Pneumococcus and Detection of Potential ‘Vaccine Escape’ Strains

    Get PDF
    While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in 'vaccine escape' strains.We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP).The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene.The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting 'vaccine escape' strains among vaccine-candidate genes

    Herniation Pits in Human Mummies: A CT Investigation in the Capuchin Catacombs of Palermo, Sicily

    Get PDF
    Herniation pits (HPs) of the femoral neck were first described in a radiological publication in 1982 as round to oval radiolucencies in the proximal superior quadrant of the femoral neck on anteroposterior radiographs of adults. In following early clinical publications, HPs were generally recognized as an incidental finding. In contrast, in current clinical literature they are mentioned in the context of femoroacetabular impingement (FAI) of the hip joint, which is known to cause osteoarthritis (OA). The significance of HPs in chronic skeletal disorders such as OA is still unclear, but they are discussed as a possible radiological indicator for FAI in a large part of clinical studies

    A Longitudinal Study of Streptococcus pneumoniae Carriage in a Cohort of Infants and Their Mothers on the Thailand-Myanmar Border

    Get PDF
    Background Pneumococcal disease is a major cause of childhood death. Almost a third of the world's children live in Southeast Asia, but there are few data from the region on pneumococcal colonization or disease. Our aim was to document the dynamics of pneumococcal carriage in a rural SE Asian birth cohort. Methods We studied 234 Karen mother-infant pairs in Northwestern Thailand. Infants were followed from birth and nasopharyngeal swabs were taken from mother and infant at monthly intervals until 24 months old. Results 8,386 swabs were cultured and 4,396 pneumococci characterized. Infants became colonized early (median 45.5 days; 95% confidence interval [CI] 44.5-46.0) and by 24 months had a median of seven (range 0–15) carriage episodes. Maternal smoking and young children in the house were associated with earlier colonization (hazard ratio [HR] 1.5 (95% CI 1.1–2.1) and 1.4 (95% CI 1.0–1.9)). For the four commonest serotypes and non-typeable pneumococci, previous exposure to homologous or heterologous serotypes resulted in an extended interval to reacquisition of the same serotype. Previous colonization by serotypes 14 and 19F was also associated with reduced carriage duration if subsequently reacquired (HR [first reacquisition] 4.1 (95% CI 1.4–12.6) and 2.6 (1.5–4.7)). Mothers acquired pneumococci less frequently, and carried them for shorter periods, than infants (acquisition rate 0.5 vs. 1.1 /100 person-days, p<0.001; median duration 31.0 vs. 60.5 days, p = 0.001). 55.8% of pneumococci from infants were vaccine serotypes (13-valent pneumococcal conjugate vaccine, PCV13), compared with 27.5% from mothers (p<0.001). Non-typeable pneumococcal carriage was common, being carried at least once by 55.1% of infants and 32.0% of mothers. Conclusions Pneumococcal carriage frequency and duration are influenced by previous exposure to both homologous and heterologous serotypes. These data will inform vaccination strategies in this population

    Population Genetics of Streptococcus dysgalactiae Subspecies equisimilis Reveals Widely Dispersed Clones and Extensive Recombination

    Get PDF
    Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epidemiology and evolutionary relationships, multilocus sequence typing (MLST) analysis was performed on SDSE isolates collected from Australia, Europe and North America.The 178 SDSE isolates, representing 37 emm types, segregate into 80 distinct sequence types (STs) that form 17 clonal complexes (CCs). Eight STs recovered from all three continents account for >50% of the isolates. Thus, a small number of STs are highly prevalent and have a wide geographic distribution. Both ST and CC strongly correlate with group carbohydrate. In contrast, eleven STs were associated with >1 emm type, suggestive of recombinational replacements involving the emm gene; furthermore, 35% of the emm types are associated with genetically distant STs. Data also reveal a history of extensive inter- and intra-species recombination involving the housekeeping genes used for MLST. Sequence analysis of single locus variants identified through goeBURST indicates that genetic change mediated by recombination occurred approximately 4.4 times more frequently than by point mutation.A few genetic lineages with an intercontinental distribution dominate among SDSE causing infections in humans. The distinction between group C and G isolates reflects recent evolution, and no long-term genetic isolation between them was found. Lateral gene transfer and recombination involving housekeeping genes and the emm gene are important mechanisms driving genetic variability in the SDSE population
    corecore