409 research outputs found

    A Review of Astrophysical Jets

    Get PDF
    Astrophysical jets are ubiquitous: this simple statement has become a commonplace over the last three decades and more as a result of observing campaigns using detectors sensitive from radio to gamma-ray energies. During this epoch, theoretical models of these sources have become more complex, moving from assumptions of isotropy that made analytic calculations possible, to fully anisotropic models of emission from the jets and their interactions with the interstellar and intra-cluster medium. Such calculations are only possible because we have extensive computational resources. In addition, the degree of international cooperation required for observing campaigns of these sorts is remarkable, since the instruments include among others the Very Large Array (VLA), the Very Long Baseline Array (VLBA), and entire constellations of satellite instruments, often working in concert. In this paper, I discuss some relevant observations from these eorts and the theoretical interpretations they have occasioned

    Hoffa

    Get PDF
    A Review of Hoffa by Arthur A. Sloan

    FROM GALACTIC TO EXTRAGALACTIC JETS: A REVIEW

    Get PDF
    An analysis of the data that have recently become available from observing campaigns, including VLA, VLBA, and satellite instruments, shows some remarkable similarities and significant differences in the data from some epochs of galactic microquasars, including GRS 1915+105, the concurrent radio and X-ray data [3] on Centaurus A (NGC 5128), 3C120 [35], and 3C454.3 as reported by Bonning et al. [16], which showed the first results from the Fermi Space Telescope for the concurrent variability at optical, UV, IR, and g-ray variability of that source. In combination with observations from microquasars and quasars from the MOJAVE Collaboration [32], these data provide time-dependent evolutions of radio data at mas (i.e., parsec for AGNs, and Astronomical Unit scales for microquasars). These sources all show a remarkable richness of patterns of variability for astrophysical jets across the entire electromagnetic spectrum. It is likely that these patterns of variability arise from the complex structures through which the jets propagate, but it is also possible that the jets constitution, initial energy, and collimation have significant observational consequences. On the other hand, Ulrich et al. [42] suggest that this picture is complicated for radio-quiet AGN by the presence of significant emission from accretion disks in those sources. Consistent with the jet-ambient-medium hypothesis, the observed concurrent radio and X-ray variability of Centaurus A [3] could have been caused by the launch of a jet element from Cen A’s central source and that jet’s interaction with the interstellar medium in the core region of that galaxy

    Big Green And Careful: How major California Newspapers Covered Two Ballot Initiatives in the 1990 General Election

    Get PDF
    Big Green And Careful: How major California Newspapers Covered Two Ballot Initiatives in the 1990 General Electio

    Multiscale Modeling of Astrophysical Jets

    Get PDF
    We are developing the capability for a multi-scale code to model the energy deposition rate and momentum transfer rate of an astrophysical jet which generates strong plasma turbulence in its interaction with the ambient medium through which it propagates. We start with a highly parallelized version of the VH-1 Hydrodynamics Code (Coella and Wood 1984, and Saxton et al., 2005). We are also considering the PLUTO code (Mignone et al. 2007) to model the jet in the magnetohydrodynamic (MHD) and relativistic, magnetohydrodynamic (RMHD) regimes. Particle-in-Cell approaches are also being used to benchmark a wave-population models of the two-stream instability and associated plasma processes in order to determine energy deposition and momentum transfer rates for these modes of jet-ambient medium interactions. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations. A preliminary simulation of a jet from the galactic center region is used to lend credence to the jet as the source of the so-called the Fermi Bubble (see, e.g., Su, M. & Finkbeiner, D. P., 2012)*It is with great sorrow that we acknowledge the loss of our colleague and friend of more than thirty years, Dr. John Ural Guillory, to his battle with cancer

    Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Get PDF
    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years)

    Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz

    Full text link
    Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build planar arrays of corrugated platelet feeds in silicon with highly symmetric beams, low cross-polarization and low side lobes. A compact Au-plated corrugated Si feed designed for 150 GHz operation exhibited performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss, <-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB cross-polarization. We are currently fabricating a 50 mm diameter array with 84 horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.Comment: 12 pages; SPIE proceedings for Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (Conference 7741, June 2010, San Diego, CA, USA

    Simultaneity in the Scientific Enterprise

    Get PDF
    AbstractIn this article, we explore the concept of simultaneity in the scientific enterprise, defined herein as the near-coincident discovery of significant advances in the development of our scientific understanding of the world. We do this by examining two case studies of such coincident or near-coincident discoveries: the development of the so-called Lorentz transformation by H.A. Lorentz (1904) and A. Einstein (1905); and the Aharonov-Bohm effect discovered independently in chronological order by Franz(1939), Ehrenberg and Siday (1949) and Aharonov and Bohm (1959). It is now generally acknowledged that the Lorentz transformations were independently developed by both Lorentz and Einstein as they worked on different approaches to solve a similar problem – i.e., the preservation of the form of Maxwell’s equations in coordinate systems moving relative to one another, while the relationship between the Ehrenberg-Siday and Aharonov-Bohm works is still controversial. In our view, these independent discoveries allow some speculation about the nature of human discovery and understanding of scientific truths as they progress through time.Key words: Gauge field theory; Quantum electrodynamics; Aharonov-Bohm effect; Sociology of knowledge; Multiple scientific discoveries
    corecore