12 research outputs found

    The Relationship Between Food Deserts, Farmers’ Markets and Food Assistance in Georgia Census Tracts

    Get PDF
    Background: Due to inadequate resources and limited access to healthy foods, residents of food deserts struggle to maintain a well-balanced, nutritious diet. These factors increase the risk of developing obesity and diet-related chronic diseases. Local farmers’ markets serve as community-level interventions, bringing healthy food to food deserts. Over the past two decades, farmers’ markets have been growing in numbers nationally. The present study explores the relationship between food deserts, placement of farmers’ markets, and availability of food assistance programs in Georgia. Methods: Data are from the 2014 USDA Food Desert Atlas and the USDA Farmers’ Market Directory. Farmers’ market addresses were geocoded in ArcGIS 10.2. Descriptive statistics and spatial visualization were used to explore census tract-level relationships. Results: Of the Georgia census tracts, 20% are food deserts. Of these, 7.2% have a farmers’ market within their boundary, compared to 5.7% of non-food desert tracts. Of these markets, 3.2% accept Famers’ Market Nutrition Program (FMNP) coupons, 9.6% accept Women, Infants, and Children Fruit and Vegetable Checks (WIC-FVC), and 21.6% accept Supplemental Nutrition Assistance Program (SNAP) benefits. Conclusions: Few farmers’ markets in Georgia are located in food deserts, and few accept food assistance programs. Fresh food remains inaccessible to low-income residents in these areas and lack of access to fresh food is associated with dietrelated chronic diseases. To reduce food insecurity, farmers’ markets could accept food assistance program funds. Additional farmers’ markets could be established in food deserts to increase availability of healthy food, reducing the risk of developing obesity and diet-related chronic diseases

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Six-Month Multicenter Study on Invasive Infections Due to Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis in Argentina

    No full text
    During a 6-month period, 95 invasive infections due to Streptococcus pyogenes and group C or group G Streptococcus dysgalactiae subsp. equisimilis were recorded from 40 centers of 16 cities in Argentina. We describe here epidemiologic data available for 55 and 19 patients, respectively, associated with invasive infections due to S. pyogenes and S. dysgalactiae subsp. equisimilis. The associated isolates and 58 additional pharyngeal isolates were genotyped and subjected to serologic and/or antibiotic susceptibility testing. Group A streptococcal emm type distribution and strain association with toxic shock appeared to differ somewhat from results found within the United States; however, serologic characterization and sof sequence typing suggested that emm types found in both countries are reflective of shared clonal types

    Roles of the Essential Protein FtsA in Cell Growth and Division in Streptococcus pneumoniae

    No full text
    Streptococcus pneumoniae is an ovoid-shaped Gram-positive bacterium that grows by carrying out peripheral and septal peptidoglycan (PG) synthesis, analogous to model bacilli such as Escherichia coli and Bacillus subtilis In the model bacilli, FtsZ and FtsA proteins assemble into a ring at midcell and are dedicated to septal PG synthesis, but not peripheral PG synthesis; hence inactivation of FtsZ or FtsA results in long filamentous cells unable to divide. Here we demonstrate that FtsA and FtsZ colocalize at midcell in S. pneumoniae and that partial depletion of FtsA perturbs septum synthesis, resulting in elongated cells with multiple FtsZ rings that fail to complete septation. Unexpectedly, complete depletion of FtsA resulted in delocalization of FtsZ rings and ultimately cell ballooning and lysis. In contrast, depletion or deletion of gpsB and sepF, which in B. subtilis are synthetically lethal with ftsA, resulted in enlarged and elongated cells, with multiple FtsZ rings, the latter mimicking partial depletion of FtsA. Notably, cell ballooning was not observed, consistent with later recruitment of these proteins to midcell after Z ring assembly. Overproduction of FtsA stimulates septation and suppresses the cell division defects caused by deletion of sepF and gpsB under some conditions, supporting the notion that FtsA shares overlapping functions with GpsB and SepF at later steps in the division process. Our results indicate that, in S. pneumoniae, both GpsB and SepF are involved in septal PG synthesis, whereas FtsA and FtsZ coordinate both peripheral and septal PG synthesis and are codependent for localization at midcell

    Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

    No full text
    LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◩ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    No full text
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD
    corecore