170 research outputs found

    On the origin of the anomalous peak in the resistivity of TiSe2

    Get PDF
    We gratefully acknowledge support from The Leverhulme Trust (Grant No. RL-2016-006) and The Royal Society.Resistivity measurements of TiSe2 typically show only a weak change in gradient at the charge density wavetransition at TCDW ≈ 200 K, but more prominently feature a broad peak at a lower Tpeak ∼165 K, which has remained poorly understood despite decades of research on the material. Here we present quantitative simulations of the resistivity using a simplified parametrization of the normal state band structure, based on recent photoemission data. Our simulations reproduce the overall profile of the resistivity of TiSe2, including its prominent peak, without implementing the CDW at all. We find that the peak in resistivity corresponds to a crossover between a low temperature regime with electron-like carriers only, to a regime around room temperature where thermally activated and highly mobile hole-like carriers dominate the conductivity. Even when implementing substantial modifications to model the CDW below the transition temperature, we find that these thermal population effects still dominate the transport properties of TiSe2.PostprintPeer reviewe

    Modelling renal defects in Bardet-Biedl syndrome patients using human iPS cells

    Get PDF
    Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney

    A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies

    Get PDF
    Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathie

    Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm

    Get PDF
    Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families

    Complete Issue 42(1)

    Get PDF
    Complete digitized issue (volume 42, issue 1, November 1959) of The Gavel of Delta Sigma Rho

    IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans

    Get PDF
    Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice

    IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans

    Get PDF
    Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice

    Modelling renal defects in Bardet-Biedl syndrome patients using human iPS cells

    Get PDF
    Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney

    Common genetic variation drives molecular heterogeneity in human iPSCs.

    Get PDF
    Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells
    corecore