1,012 research outputs found

    Service user leadership: training and development for service users to take the lead

    Get PDF
    Purpose – This paper outlines the concept of service user leadership and both describes and reflects on an accredited training programme that enables mental health service users to take a leadership role. Design/methodology/approach – The authors argue for a service user leadership approach and the training programme is reviewed by previous participants Findings – Service users can take on a leadership role if they are given suitable and relevant training and development opportunities. Service user led training can be transformational. Practical implications – Commissioners of mental health services should consider how to support service user leadership programmes, which can reach places and achieve outcomes that traditional mental health services are unable to attain. Originality/value – The concept of service user leadership is relatively new and the training programme described in this paper is both original and highly valued by participants with many significant outcomes. Keywords Service user leadership, Peer support, Empowerment, Service user involvement, Confidence, Wellbeing, Leadership, Trainin

    The influence of phosphatidylserine localisation and lipid phase on membrane remodelling by the ESCRT-II/ESCRT-III complex

    Get PDF
    The endosomal sorting complex required for transport (ESCRT) organises in supramolecular structures on the surface of lipid bilayers to drive membrane invagination and scission of intraluminal vesicles (ILVs), a process also controlled by membrane mechanics. However, ESCRT association with the membrane is also mediated by electrostatic interactions with anionic phospholipids. Phospholipid distribution within natural biomembranes is inhomogeneous due to, for example, the formation of lipid rafts and curvature-driven lipid sorting. Here, we have used phase-separated giant unilamellar vesicles (GUVs) to investigate the link between phosphatidylserine (PS)-rich lipid domains and ESCRT activity. We employ GUVs composed of phase separating lipid mixtures, where unsaturated DOPS and saturated DPPS lipids are incorporated individually or simultaneously to enhance PS localisation in liquid disordered (Ld) and/or liquid ordered (Lo) domains, respectively. PS partitioning between the coexisting phases is confirmed by a fluorescent Annexin V probe. Ultimately, we find that ILV generation promoted by ESCRTs is significantly enhanced when PS lipids localise within Ld domains. However, the ILVs that form are rich in Lo lipids. We interpret this surprising observation as preferential recruitment of the Lo phase beneath the ESCRT complex due to its increased rigidity, where the Ld phase is favoured in the neck of the resultant buds to facilitate the high membrane curvature in these regions of the membrane during the ILV formation process. Ld domains offer lower resistance to membrane bending, demonstrating a mechanism by which the composition and mechanics of membranes can be coupled to regulate the location and efficiency of ESCRT activity

    An Economic Study of the Effect of Android Platform Fragmentation on Security Updates

    Full text link
    Vendors in the Android ecosystem typically customize their devices by modifying Android Open Source Project (AOSP) code, adding in-house developed proprietary software, and pre-installing third-party applications. However, research has documented how various security problems are associated with this customization process. We develop a model of the Android ecosystem utilizing the concepts of game theory and product differentiation to capture the competition involving two vendors customizing the AOSP platform. We show how the vendors are incentivized to differentiate their products from AOSP and from each other, and how prices are shaped through this differentiation process. We also consider two types of consumers: security-conscious consumers who understand and care about security, and na\"ive consumers who lack the ability to correctly evaluate security properties of vendor-supplied Android products or simply ignore security. It is evident that vendors shirk on security investments in the latter case. Regulators such as the U.S. Federal Trade Commission have sanctioned Android vendors for underinvestment in security, but the exact effects of these sanctions are difficult to disentangle with empirical data. Here, we model the impact of a regulator-imposed fine that incentivizes vendors to match a minimum security standard. Interestingly, we show how product prices will decrease for the same cost of customization in the presence of a fine, or a higher level of regulator-imposed minimum security.Comment: 22nd International Conference on Financial Cryptography and Data Security (FC 2018

    El desarrollo histórico de los «métodos activos» en educación

    Get PDF
    Si el terrible maestro d e escuela de Carlos Dickens. Mr. Squeers (en Nicholas Nickleby) viviese todavía, indudablemente describiría su famosa técnica de enseñar a sus alumnos a deletrear la palabra «ventana» yendo y limpiándola por considerar esta técnica como el método activo más moderno de educación en aquella época. Wackford Squeers es único entre los progresistas históricos porque no solamente eran originales sus ideas, las cuales habían sido verdaderas para tantos pioneros a lo largo de los siglos (como veremos), sino porque su práctica había permitido que estas ideas se atrofiaran durante largo tiempo convirtiéndose en una aburrida rutina, lo cual es más propio de los discípulos de los grandes pioneros. El presenta dentro de un mismo proceso todos los períodos por los que ha pasado una idea desde la originalidad y novedades hasta la extinción y la muerte. Pero lo más característico de tocio ello, históricamente, es que no había nada nuevo en lo que dijo o en lo que hizo

    Reduced risk of Barrett’s esophagus in statin users: case–control study and meta-analysis

    Get PDF
    Background: Use of statins has been associated with a reduced incidence of esophageal adenocarcinoma in population-based studies. However there are few studies examining statin use and the development of Barrett’s esophagus. Aim: The purpose of this study was to examine the association between statin use and the presence of Barrett’s esophagus in patients having their first gastroscopy. Methods: We have performed a case–control study comparing statin use between patients with, and without, an incident diagnosis of non-dysplastic Barrett’s esophagus. Male Barrett’s cases (134) were compared to 268 male age-matched controls in each of two control groups (erosive gastro-esophageal reflux and dyspepsia without significant upper gastrointestinal disease). Risk factor and drug exposure were established using standardised interviews. Logistic regression was used to compare statin exposure and correct for confounding factors. We performed a meta-analysis pooling our results with three other case–control studies. Results: Regular statin use was associated with a significantly lower incidence of Barrett’s esophagus compared to the combined control groups [adjusted OR 0.62 (95 % confidence intervals 0.37–0.93)]. This effect was more marked in combined statin plus aspirin users [adjusted OR 0.43 (95 % CI 0.21–0.89)]. The inverse association between statin or statin plus aspirin use and risk of Barrett’s was significantly greater with longer duration of use. Meta-analysis of pooled data (1098 Barrett’s, 2085 controls) showed that statin use was significantly associated with a reduced risk of Barrett’s esophagus [pooled adjusted OR 0.63 (95 % CI 0.51–0.77)]. Conclusions: Statin use is associated with a reduced incidence of a new diagnosis of Barrett’s esophagus

    Mechanomodulation of Lipid Membranes by Weakly Aggregating Silver Nanoparticles

    Get PDF
    Silver nanoparticles (AgNPs) have wide-ranging applications, including as additives in consumer products and in medical diagnostics and therapy. Therefore, understanding how AgNPs interact with biological systems is important for ascertaining any potential health risks due to the likelihood of high levels of human exposure. Besides any severe, acute effects, it is desirable to understand more subtle interactions that could lead to milder, chronic health impacts. Nanoparticles are small enough to be able to enter biological cells and interfere with their internal biochemistry. The initial contact between the nanoparticle and cell is at the plasma membrane. To gain fundamental mechanistic insight into AgNP–membrane interactions, we investigate these phenomena in minimal model systems using a wide range of biophysical approaches applied to lipid vesicles. We find a strong dependence on the medium composition, where colloidally stable AgNPs in a glucose buffer have a negligible effect on the membrane. However, at physiological salt concentrations, the AgNPs start to weakly aggregate and sporadic but significant membrane perturbation events are observed. Under these latter conditions, transient poration and structural remodeling of some vesicle membranes are observed. We observe that the fluidity of giant vesicle membranes universally decreases by an average of 16% across all vesicles. However, we observe a small population of vesicles that display a significant change in their mechanical properties with lower bending rigidity and higher membrane tension. Therefore, we argue that the isolated occurrences of membrane perturbation by AgNPs are due to low-probability mechanomodulation by AgNP aggregation at the membrane

    Characterisation of Hybrid Polymersome Vesicles Containing the Efflux Pumps NaAtm1 or P-Glycoprotein

    Get PDF
    Investigative systems for purified membrane transporters are almost exclusively reliant on the use of phospholipid vesicles or liposomes. Liposomes provide an environment to support protein function; however, they also have numerous drawbacks and should not be considered as a “one-size fits all” system. The use of artificial vesicles comprising block co-polymers (polymersomes) offers considerable advantages in terms of structural stability; provision of sufficient lateral pressure; and low passive permeability, which is a particular issue for transport assays using hydrophobic compounds. The present investigation demonstrates strategies to reconstitute ATP binding cassette (ABC) transporters into hybrid vesicles combining phospholipids and the block co-polymer poly (butadiene)-poly (ethylene oxide). Two efflux pumps were chosen; namely the Novosphingobium aromaticivorans Atm1 protein and human P-glycoprotein (Pgp). Polymersomes were generated with one of two lipid partners, either purified palmitoyl-oleoyl-phosphatidylcholine, or a mixture of crude E. coli lipid extract and cholesterol. Hybrid polymersomes were characterised for size, structural homogeneity, stability to detergents, and permeability. Two transporters, NaAtm1 and P-gp, were successfully reconstituted into pre-formed and surfactant-destabilised hybrid polymersomes using a detergent adsorption strategy. Reconstitution of both proteins was confirmed by density gradient centrifugation and the hybrid polymersomes supported substrate dependent ATPase activity of both transporters. The hybrid polymersomes also displayed low passive permeability to a fluorescent probe (calcein acetomethoxyl-ester (C-AM)) and offer the potential for quantitative measurements of transport activity for hydrophobic compounds

    Bardet-Biedl syndrome proteins control cilia length through regulation of actin polymerisation.

    Get PDF
    Primary cilia are cellular appendages important for signal transduction and sensing the environment. Bardet-Biedl syndrome proteins form a complex that is important for several cytoskeleton-related processes such as ciliogenesis, cell migration and division. However, the mechanisms by which BBS proteins may regulate the cytoskeleton remain unclear. We discovered that Bbs4 and Bbs6 deficient renal medullary cells display a characteristic behaviour comprising poor migration, adhesion and division with an inability to form lamellipodial and filopodial extensions. Moreover, fewer mutant cells were ciliated (48% ± 6 for wild-type cells vs 23% ± 7 for Bbs4 null cells; P-value < 0.0001) and their cilia were shorter (2.55&emsp14;μm ± 0.41 for wild-type cells vs 2.16&emsp14;μm ± 0.23 for Bbs4 null cells; P-value < 0.0001). Whilst the microtubular cytoskeleton and cortical actin were intact, actin stress fibre formation was severely disrupted, forming abnormal apical stress fibre aggregates. Furthermore, we observed over-abundant focal adhesions in Bbs4, Bbs6 and Bbs8-deficient cells. In view of these findings and the role of RhoA in regulation of actin filament polymerisation, we showed that RhoA-GTP levels were highly upregulated in the absence of Bbs proteins. Upon treatment of Bbs4-deficient cells with chemical inhibitors of RhoA, we were able to restore cilia length and number as well as the integrity of the actin cytoskeleton. Together these findings indicate that Bbs proteins play a central role in the regulation of the actin cytoskeleton and control cilia length through alteration of RhoA levels

    Sortase-mediated labelling of lipid nanodiscs for cellular tracing

    Get PDF
    Lipid nanodiscs have broad applications in membrane protein assays, biotechnology and materials science. Chemical modification of the nanodiscs to expand their functional attributes is generally desirable for all of these uses. We present a method for site-selective labelling of the N-terminus of the nanodisc’s membrane scaffold protein (MSP) using the Sortase A protein. Labelling of the MSP was achieved when assembled within the lipid nanodisc architecture, demonstrating that this method can be used as a retrofit approach to modification of preformed nanodiscs before or during application. We label the MSP with a fluorescent fluorescein moiety and use them to image nanodisc uptake into HeLa cells. The Sortase A labelling method could be employed as a general approach to labelling nanodiscs with application-specific functionalities

    In Vitro Membrane Remodeling by ESCRT is Regulated by Negative Feedback from Membrane Tension

    Get PDF
    Artificial cells can shed new light on the molecular basis for life and hold potential for new chemical technologies. Inspired by how nature dynamically regulates its membrane compartments, we aim to repurpose the endosomal sorting complex required for transport (ESCRT) to generate complex membrane architectures as suitable scaffolds for artificial cells. Purified ESCRT-III components perform topological transformations on giant unilamellar vesicles to create complex “vesicles-within-a-vesicle” architectures resembling the compartmentalization in eukaryotic cells. Thus far, the proposed mechanisms for this activity are based on how assembly and disassembly of ESCRT-III on the membrane drives deformation. Here we demonstrate the existence of a negative feedback mechanism from membrane mechanics that regulates ESCRT-III remodeling activity. Intraluminal vesicle (ILV) formation removes excess membrane area, increasing tension, which in turn suppresses downstream ILV formation. This mechanism for in vitro regulation of ESCRT-III activity may also have important implications for its in vivo functions
    • …
    corecore