247 research outputs found

    Probing RNA recognition by human ADAR2 using a high-throughput mutagenesis method.

    Get PDF
    Adenosine deamination is one of the most prevalent post-transcriptional modifications in mRNA. In humans, ADAR1 and ADAR2 catalyze this modification and their malfunction correlates with disease. Recently our laboratory reported crystal structures of the human ADAR2 deaminase domain bound to duplex RNA revealing a protein loop that binds the RNA on the 5' side of the modification site. This 5' binding loop appears to be one contributor to substrate specificity differences between ADAR family members. In this study, we endeavored to reveal detailed structure-activity relationships in this loop to advance our understanding of RNA recognition by ADAR2. To achieve this goal, we established a high-throughput mutagenesis approach which allows rapid screening of ADAR variants in single yeast cells and provides quantitative evaluation for enzymatic activity. Using this approach, we determined the importance of specific amino acids at 19 different positions in the ADAR2 5' binding loop and revealed six residues that provide essential structural elements supporting the fold of the loop and key RNA-binding functional groups. This work provided new insight into RNA recognition by ADAR2 and established a new tool for defining structure-function relationships in ADAR reactions

    DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA.

    Get PDF
    Adenosine deaminases that act on RNA (ADARs) carry out adenosine (A) to inosine (I) editing reactions with a known requirement for duplex RNA. Here, we show that ADARs also react with DNA/RNA hybrid duplexes. Hybrid substrates are deaminated efficiently by ADAR deaminase domains at dA-C mismatches and with E to Q mutations in the base flipping loop of the enzyme. For a long, perfectly matched hybrid, deamination is more efficient with full length ADAR2 than its isolated deaminase domain. Guide RNA strands for directed DNA editing by ADAR were used to target six different 2΄-deoxyadenosines in the M13 bacteriophage ssDNA genome. DNA editing efficiencies varied depending on the sequence context of the editing site consistent with known sequence preferences for ADARs. These observations suggest the reaction within DNA/RNA hybrids may be a natural function of human ADARs. In addition, this work sets the stage for development of a new class of genome editing tools based on directed deamination of 2΄-deoxyadenosines in DNA/RNA hybrids

    The influence of single base triplet changes on the stability of a Pur·Pur·Pyr triple helix determined by affinity cleaving

    Get PDF
    The influence of sixteen base triplet changes at a single position within a pur·pur·pyr triple helix was examined by affinity cleaving. For the 15 base pair target site studied here, G·GC, A·AT and T·AT triplets stabilize a triple helix to a greater extent than the other 13 natural triplets (pH = 7.4, 25°C). Weaker interactions were detected for the C·AT, A·GC and T·CG triplets. The absence of specific, highly stabilizing interactions between third strand bases and the CG or TA base pairs demonstrates a current sequence limitation to formation of this structure. Models for the two dimensional base triplet interactions for all possible 16 natural triplets are presented

    The influence of single base triplet changes on the stability of a Pur·Pur·Pyr triple helix determined by affinity cleaving

    Get PDF
    The influence of sixteen base triplet changes at a single position within a pur·pur·pyr triple helix was examined by affinity cleaving. For the 15 base pair target site studied here, G·GC, A·AT and T·AT triplets stabilize a triple helix to a greater extent than the other 13 natural triplets (pH = 7.4, 25°C). Weaker interactions were detected for the C·AT, A·GC and T·CG triplets. The absence of specific, highly stabilizing interactions between third strand bases and the CG or TA base pairs demonstrates a current sequence limitation to formation of this structure. Models for the two dimensional base triplet interactions for all possible 16 natural triplets are presented

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    First administration to man of Org 25435, an intravenous anaesthetic: A Phase 1 Clinical Trial

    Get PDF
    BACKGROUND: Org 25435 is a new water-soluble alpha-amino acid ester intravenous anaesthetic which proved satisfactory in animal studies. This study aimed to assess the safety, tolerability and efficacy of Org 25435 and to obtain preliminary pharmacodynamic and pharmacokinetic data. METHODS: In the Short Infusion study 8 healthy male volunteers received a 1 minute infusion of 0.25, 0.5, 1.0, or 2.0 mg/kg (n = 2 per group); a further 10 received 3.0 mg/kg (n = 5) or 4.0 mg/kg (n = 5). Following preliminary pharmacokinetic modelling 7 subjects received a titrated 30 minute Target Controlled Infusion (TCI), total dose 5.8-20 mg/kg. RESULTS: Within the Short Infusion study, all subjects were successfully anaesthetised at 3 and 4 mg/kg. Within the TCI study 5 subjects were anaesthetised and 2 showed signs of sedation. Org 25435 caused hypotension and tachycardia at doses over 2 mg/kg. Recovery from anaesthesia after a 30 min administration of Org 25435 was slow (13.7 min). Pharmacokinetic modelling suggests that the context sensitive half-time of Org 25435 is slightly shorter than that of propofol in infusions up to 20 minutes but progressively longer thereafter. CONCLUSIONS: Org 25435 is an effective intravenous anaesthetic in man at doses of 3 and 4 mg/kg given over 1 minute. Longer infusions can maintain anaesthesia but recovery is slow. Hypotension and tachycardia during anaesthesia and slow recovery of consciousness after cessation of drug administration suggest this compound has no advantages over currently available intravenous anaesthetics

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Bond graph modelling of chemoelectrical energy transduction

    Get PDF
    Energy-based bond graph modelling of biomolecular systems is extended to include chemoelectrical transduction thus enabling integrated thermodynamically-compliant modelling of chemoelectrical systems in general and excitable membranes in particular. Our general approach is illustrated by recreating a well-known model of an excitable membrane. This model is used to investigate the energy consumed during a membrane action potential thus contributing to the current debate on the trade-off between the speed of an action potential event and energy consumption. The influx of Na+ is often taken as a proxy for energy consumption; in contrast, this paper presents an energy based model of action potentials. As the energy based approach avoids the assumptions underlying the proxy approach it can be directly used to compute energy consumption in both healthy and diseased neurons. These results are illustrated by comparing the energy consumption of healthy and degenerative retinal ganglion cells using both simulated and in vitro data

    Constraint-based probabilistic learning of metabolic pathways from tomato volatiles

    Get PDF
    Clustering and correlation analysis techniques have become popular tools for the analysis of data produced by metabolomics experiments. The results obtained from these approaches provide an overview of the interactions between objects of interest. Often in these experiments, one is more interested in information about the nature of these relationships, e.g., cause-effect relationships, than in the actual strength of the interactions. Finding such relationships is of crucial importance as most biological processes can only be understood in this way. Bayesian networks allow representation of these cause-effect relationships among variables of interest in terms of whether and how they influence each other given that a third, possibly empty, group of variables is known. This technique also allows the incorporation of prior knowledge as established from the literature or from biologists. The representation as a directed graph of these relationship is highly intuitive and helps to understand these processes. This paper describes how constraint-based Bayesian networks can be applied to metabolomics data and can be used to uncover the important pathways which play a significant role in the ripening of fresh tomatoes. We also show here how this methods of reconstructing pathways is intuitive and performs better than classical techniques. Methods for learning Bayesian network models are powerful tools for the analysis of data of the magnitude as generated by metabolomics experiments. It allows one to model cause-effect relationships and helps in understanding the underlying processes
    corecore