94 research outputs found
The mouse alpha-globin cluster: A paradigm for studying genome regulation and organization
The mammalian globin gene clusters provide a paradigm for studying the relationship between genome structure and function. As blood stem cells undergo lineage specification and differentiation to form red blood cells, the chromatin structure and expression of the α-globin cluster change. The gradual activation of the α-globin genes in well-defined cell populations has enabled investigation of the structural and functional roles of its enhancers, promoters and boundary elements. Recent studies of gene regulatory processes involving these elements at the mouse α-globin cluster have brought new insights into the general principles underlying the three-dimensional structure of the genome and its relationship to gene expression throughout time
Scalable in vitro production of defined mouse erythroblasts
Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios
The Collective Submitted Works from Honors 2030
Students in the Honors 2030, Inquiries in the Social and Behavioral Sciences course each participated in the URS 2020 as their final project for the course. Dr. Wilson worked with each student as a faculty mentor to create, draft, edit, approve and publish each of the final posters and papers submitted to the 2020 URS for the course
High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale
Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation
Efficiency of split-mouth designs
. The purpose of this paper is (1) to investigate the similarity of the amount, distribution, and, severity of periodontal disease of the within-patient experimental units, (2) to estimate the relative efficiencies of split-mouth designs when compared to whole-mouth designs, and (3) to discuss how stratification on initial pocket depth can result in large differences in the power of the test-statistics in the different disease categories. Periodontal disease characteristics are not always homogeneously distributed over the within-patient experimental units and this heterogeneity can reduce the efficiency of split-mouth designs. In particular, if analyses are stratified on initial pocket depth, sites with an initial probing depth deeper than 6 mm may be small in number and asymmetrically distributed when compared to sites with an initial probing depth less than 6 mm. This may result in large differences of the power of the test statistics among the different disease categories and should lead to a careful interpretation of the statistical significance tests. When disease characteristics are symmetrically distributed over the within-patient experimental units and a sufficient number of sites is present per experimental unit, the split-mouth design can provide moderate to large gains in relative efficiency. In the absence of a symmetric disease distribution, wholemouth clinical trials may be preferable.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75701/1/j.1600-051X.1990.tb01060.x.pd
Reactivation of a developmentally silenced embryonic globin gene
The α- and β-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues
A call for public archives for biological image data
Public data archives are the backbone of modern biological and biomedical
research. While archives for biological molecules and structures are
well-established, resources for imaging data do not yet cover the full range of
spatial and temporal scales or application domains used by the scientific
community. In the last few years, the technical barriers to building such
resources have been solved and the first examples of scientific outputs from
public image data resources, often through linkage to existing molecular
resources, have been published. Using the successes of existing biomolecular
resources as a guide, we present the rationale and principles for the
construction of image data archives and databases that will be the foundation
of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur
Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve ‘active’ regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain ‘inactive’ regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies
Transcription-driven genome organization::A model for chromosome structure and the regulation of gene expression tested through simulations
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and topologically-associating domains (TADs), to contact domains stabilized by cohesin and CTCF. However, molecular mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors—a transcription factory—increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers
- …