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Technology for measuring 3D genome topology is increasingly important
for studying gene regulation, for genome assembly and for mapping of
genome rearrangements. Hi-C and other ligation-based methods have
become routine but have specific biases. Here, we develop multiplex-GAM, a
faster and more affordable version of genome architecture mapping (GAM),
aligation-free technique that maps chromatin contacts genome-wide. We
performa detailed comparison of multiplex-GAM and Hi-C using mouse
embryonic stem cells. When examining the strongest contacts detected by
either method, we find that only one-third of these are shared. The strongest
contacts specifically found in GAM often involve ‘active’ regions, including
many transcribed genes and super-enhancers, whereas in Hi-C they more
often contain ‘inactive’ regions. Our work shows that active genomic
regions are involved in extensive complex contacts that are currently
underestimated in ligation-based approaches, and highlights the need for
orthogonal advances in genome-wide contact mapping technologies.

Our understanding of gene regulation has been dramatically trans-
formed by genome-wide methods for identifying regulatory elements
(for example ChIP-seq, ATAC-seq)' and by technologies that show how
these elements are connected to one another through 3D genome con-
formation (for example, Hi-C)* However, many cell types of interest
aretoorare to assay using these methods. Although single-cell variants

of Hi-Care available, they require purified, disaggregated cell suspen-
sions, which canbe unachievable for rare cell types embedded incom-
plextissues. Furthermore, methods based on chromatin conformation
capture usually focus on contacts between pairs of elements, neglecting
higher-order associations. We previously showed that genome archi-
tecture mapping (GAM) canidentify three-way chromatin contacts and
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achieves strong enrichment for contacts between regions containing
active genes, enhancers and super-enhancers while requiring only a
few hundred cells’. GAM has also been recently used for haplotype
reconstruction and phasing of genetic variants, an essential prereq-
uisite for detection of allele-specific analysis of chromatin contacts
in non-model organisms or individuals with unknown haplotypes*.

The original GAM protocol involves DNA sequencing of many
individual thin nuclear slices (which we call nuclear profiles), each
isolatedinarandom orientation from adifferent cellin the population.
The principle behind GAM is that DNA loci that are physically close to
eachotherinthenuclearspaceare presentinthe same nuclear profile
more frequently than loci that are remote from one another. In the
prototype version of GAM, a collection of thin (200 nm) cryosections
were cut through a sample of mouse embryonic stem cells, before
microdissection of single nuclear profiles into separate polymerase
chain reaction (PCR) tubes, followed by lengthy manual preparation
of sequencinglibraries to determine the DNA content of each tube.

We now introduce several significant improvements to GAM.
First, toreduce the hands-on time required for sequencing hundreds
or thousands of nuclear profiles, we developed multiplex-GAM. In
this variant of GAM, multiple independent nuclear profiles can be
addedinto asingle tube and then sequenced together, cutting down
onbothlaborand reagent costs. Second, we optimized the protocol
for DNA extraction from nuclear profiles such that it is now compat-
iblewithliquid dispensing robots, further reducing time and reagent
volumes required to generate a GAM dataset. Third, we extended
the SLICE statistical model for analysis of GAM data to cover a wider
range of experimental parameters, including the addition of multiple
nuclear profiles per tube. We also use the SLICE statistical model to
determine optimal experimental parameters to aid the design of GAM
experiments in different cells and organisms. Fourth, we expanded
our GAM dataset on mouse embryonic stem cells from 408 to 1,250
cells, which we use for comparison with Hi-C. Finally, we show that
many contacts are equally detected by both methods, but also identify
method-specific contacts, especially those that involve simultaneous
associations between three or more genomic elements. We show that
GAM is a versatile methodology for mapping chromatin contacts
that has several advantages over Hi-C (Supplementary Table 1). We
also provide aframework to design GAM experiments that considers
the depth of chromatin contact information required and minimizes
data collection effort.

Results

Multiplex-GAM reduces sequencing costs and hands-on time
We previously published a GAM dataset of 408 single nuclear profiles
(408 x INP) frommouse embryonicstemcells,inwhich each nuclear pro-
filewasisolated fromadifferent nucleusinto asingle PCR tube (Fig. 1a,
original-GAM)?. We showed that the number of times that particu-
lar genomic loci are found together in the same nuclear profile (their
co-segregation) isameasure of their physical proximity in the original
population of cells, with high co-segregation valuesindicating that the
regions are close in space. Each nuclear profile contains only ~5% of
the genome, and loci on different chromosomes are found togetherin
less than1% of nuclear profiles. We therefore reasoned that combining
more than one nuclear profile into a single sequencing library would
notreduce our ability to distinguish interacting from non-interacting
loci (Fig. 1a, multiplex-GAM).

Totest thisidea, we used a dataset of 481 single nuclear profiles
sequenced individually (481 x INP), which consists of 408 previously
published samples® plus 73 additional single nuclear profile (INP)
datasets (Supplementary Table 2). To simulate multiplex sequencing
of two or three nuclear profiles (2NP or 3NP), we combined 480 of
the single nuclear profile datasets and generated 240 or 160 in silico
GAM samples containing two or three nuclear profiles, respectively.
We thenre-calculated co-segregation matrices from these simulated

multiplex-GAM datasets and found that these were visually highly
similar (Fig. 1b) and highly correlated (Extended Data Fig. 1).

To formally understand the effect of including several nuclear
profiles in multiplex-GAM experimental designs and to optimize our
experimental parameters, we extended SLICE, the statistical tool pre-
viously developed toinfer non-random DNA interaction probabilities
fromlocus co-segregation in GAM data (Extended Data Fig. 2)*. SLICE
now considers the effects of number of nuclear profiles per GAM sam-
ple, nuclear ellipticity and nuclear profile thickness (Fig. 1c, Extended
DataFig.3a-d and Supplementary Table 3). To determine the optimal
parameters for collection of multiplex-GAM datasets in mouse embry-
onic stem cells, we applied the updated SLICE model to estimate the
minimal number of tubes (m*) required to detect chromatin contacts
in different experimental designs (for example, different numbers of
nuclear profiles per GAM sample; Supplementary Note). In general,
multiplex-GAM performs similarly to original-GAM, but can require an
increased number of nuclear profiles to detect the weakest contacts
(including inter-chromosomal contacts), or to work at the highest
genomic resolutions (thatis, smaller window sizes; Fig. 1d).

Using the updated SLICE model, we calculate optimal experi-
mental parameters for the application of GAM to a range of different
organisms and cell types. Despite differences in ploidy and nuclear
geometry between the selected cell types, we find that the minimum
number of tubes (m*) required to reach a given statistical power is
approximately constant (requiring only ~200 tubes to detect contacts
witha probability of interaction (Pi) > 30%) provided that each sample
is collected with the optimal number of multiplexed nuclear profiles
(Extended Data Fig. 3e). Finally, we determined the optimal experimen-
tal parameters for producing a new multiplex-GAM dataset in mouse
embryonic stem cells, and found that 3-10 nuclear profiles per GAM
library is optimal. For example, a GAM dataset of ~250 libraries each
multiplexed with three nuclear profiles (that is, obtained from a total
of only 750 mouse embryonic stem cells) would be sufficient to sample
contacts with interaction probabilities above 50% at a resolution of
30 kbacross genomic distances >100 kb, while reducing reagent costs
and experiment time by two-thirds (Extended Data Fig. 3f).

Next, we implemented several improvements to the original
experimental pipeline for GAM data collection, including staining
of cell profiles for better identification (Extended Data Fig. 4a). First,
we screened for chemical stains compatible with both the direct visu-
alization of the nucleus prior to microdissection and high-quality
DNA extraction. We found that most DNA stains prevent subsequent
extraction and/or amplification of DNA from nuclear profiles, prob-
ably because they bind too strongly or damage DNA (Extended Data
Fig. 4b). We identified a cresyl violet stain that does not distinguish
the cytoplasm from the nucleus, but greatly improves identification
of cellular profiles during microdissection without affecting DNA
extraction (Extended Data Fig. 4c,d). To estimate the frequency of
cellular profiles thatintersect the nucleusinacresyl violet collection,
we counterstained mouse embryonic stem cell cryosections with SYTO
RNASelect and 4,6-diamidino-2-phenylindole (DAPI), and found that
approximately three in four cellular profiles intersect the nucleus
(Extended DataFig. 4e,f).

To directly test the multiplex-GAM approach with our revised
experimental pipeline, we collected anew batch of 249 multiplex-GAM
sequencing libraries, each containing three nuclear profiles on aver-
age, from an independent biological replicate of mouse embryonic
stem cells (Fig. 1e). The genomic coverage was comparable across
different collection batches (18% of 40 kb windows are detected per
nuclear profile on average; Extended Data Fig. 5a,b) and was consist-
entwith the expected presence of three nuclear profiles per library on
average (7% for INP data, 20% for 3NP in silico data). Comparison of
normalized linkage matrices between the 249 x 3NP multiplex-GAM
dataset and the 481 x INP original-GAM dataset indicated that local
contact information is well preserved in multiplex-GAM (Fig. 1e).
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Fig.1| Anupdated mouse embryonic stem cell chromatin contact map
produced with multiplex-GAM. a, In astandard GAM experiment, thin slices
fromindividual nuclei (nuclear profiles, NPs) are isolated by cryosectioning

and laser microdissection, before the DNA content of each slice is determined

by next-generation sequencing. Ina multiplex-GAM experiment, DNA from
multiple NPs is extracted and sequenced together, reducing sequencing costs.
b, Multiplex-GAM data constructed in silico by combining INP datasets at 40 kb
resolution (chromosome (chr.) 6,49-54 Mb). Contact maps were produced from
single-NP data (top), in silico 2NP data (middle) and in silico 3NP data (bottom).
D’, normalized linkage disequilibrium. ¢, The updated SLICE model accounts

for the number of NPs multiplexed in each tube (X;), the nuclear ellipticity

(¢) and the thickness of each NP (k). d, SLICE models can be used to guide the
experimental design, for example to estimate the minimum number of tubes (m*)
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needed to achieve a given statistical power. e,f, Visualization of contacts centered
atthe Sox2locus (chr.3,30-39 Mb) in GAM INP data and 3NP data (e), and the
combined GAM-1,250 dataset (f), all at 40 kb resolution. g, Significant pairwise
interactions at 40 kb resolution identified by SLICE between functional elements
inthe Sox2locus, including the Sox2 gene and its closest super-enhancer (SE).
The arrows indicate previously identified interactions between these elements™.
Neur. E, neuronal enhancer. h,i, Enrichment analysis of pairwise interactions

(h) and triplet interactions (i) identified by SLICE involving active, inactive,
intergenic or enhancer regions (h) and topologically associating domains that
are highly transcribed (high), lowly transcribed (low) or that overlap super-
enhancers. (i) for the GAM-1,250 dataset and the original GAM-408 dataset.
Statistically significant enrichments or depletions (those falling outside 95% of
randomized observations after Bonferroni correction) are marked by an asterisk.
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The 249 x 3NP dataset had a detection efficiency (probability of detect-
ing any given genomic window) of 89% at 40 kb, and 80% of windows
were detected atleast 40 times. We therefore concluded that the quality
of the 249 x 3NP dataset was at least as good as the 481 x INP dataset,
which had adetection efficiency of 93% at 40 kb resolution and 80% of
windows were detected at least 28 times.

We next considered the possibility of merging the INP and 3NP
datasets. Wefirst confirmed insilico that combining INP and 3NP librar-
ies does not reduce the quality of the dataset (Extended Data Fig. 5c).
We therefore merged the experimental INP and 3NP datasets to create
a combined GAM dataset spanning a total of 1,250 nuclear profiles,
each from a different cell (Fig. 1f). To confirm the increased statisti-
cal power of the combined 1 + 3NP dataset, we used SLICE to identify
interacting regions and compared them with those obtained with the
original 408 x INP dataset’ (Fig. 1g). We detect a greater number of
interacting regions using the deeper1+3NP dataset compared with the
published INP datafor both pairwise (Fig. 1h and Extended Data Fig. 5d)
and three-way interactions (Fig. 1i), further confirming that the most
prominentinteractions foundin mouse embryonic stem cellsinvolve
active and enhancer genomicregions. The 1+ 3NP dataset also enabled
detection of 4,711 significant interactions with a 10% false discovery
rate threshold (Extended Data Fig. 5e and Supplementary Table 4).

One ofthe key aims of genome-wide 3D chromatin folding assays
is the detection of topologically associating domains (TADs)". We
compared TAD boundary calls between GAM, bulk Hi-C® and single-cell
Hi-C’, and found that the three approaches detect asimilar set of bound-
aries (Extended Data Fig. 6a-d). Boundaries detected by all methods
tend to have strongerinsulation than boundaries detected by only one
method. Others have reported a similar overlap of TADs called from
the same dataset by different algorithms®; thus, these unique TADs
arelikely toreflectinherent method-dependent variability. The distri-
bution of previously described features enriched at TAD boundaries
was similar for boundaries common to Hi-C and GAM, although a few
epigenetic features were not found enriched in the small number of
boundaries unique to GAM (123; Extended Data Fig. 6e).

Identification of differential and common contacts
GAM detects far more contacts at larger genomic distances than Hi-C,
such as megabase-range contacts between super-enhancers, validated
by single-cell fluorescence in situ hybridization (FISH) experiments’.In
silicomodeling of Hi-C and GAM data has shown that GAM performs bet-
ter than Hi-C at capturingreal distances (Spearman correlation: -0.89
for Hi-Cand -0.99 for GAM)°. To investigate genome-wide differences
between GAM and Hi-Cin anunbiased fashion, we developed amethod
for directly comparing matrices derived from the two methods. For
these analyses, we considered contacts between loci separated by
<4 Mb, given that the fidelity of Hi-C decreases at larger genomic dis-
tances. The selected genomic length scale is useful in most current
applications of chromatin contact mapping; in particular, itis sufficient
for the detection of enhancer-promoter contacts in most instances.

Given that GAM and Hi-C data have very different numerical dis-
tributions, we first applied adistance-based z-score transformation to
both datasets to address the distance decay (Fig. 2a, rows1and 2). We
then subtracted the two normalized matrices (row 3) and extracted
the most divergent contacts, that is, those for which the difference
between the two matrices was greater than the 5% extremes defined
by a fitted normal distribution (row 4). We refer to these most differ-
ential contacts as GAM-specific or Hi-C-specific contacts. To explore
the contacts that are well detected by both GAM and Hi-C, we also
established aset of strong-and-common contacts by selecting the 10%
strongest contacts from among the least differential contacts (with
z-score delta<1.0; row5).

We verified that the GAM-specific and Hi-C-specific contacts have
similar distance decays (Extended Data Fig. 7a), and most are also found
with alternative normalization methods (Extended Data Fig. 7b). We

also verified that the GAM-specific contacts selected have high inten-
sity in GAM and low intensity in Hi-C, and vice versa for Hi-C-specific
contacts (Extended Data Fig. 7c). Furthermore, we determined whether
the most prominent contacts captured with SLICE from GAM data, or
with Fit-Hi-C from Hi-C data, were differentially detected between the
two methods (Fig. 2b and Extended DataFig. 7c). Whereas the strongest
GAM contacts detect a proportion of Fit-Hi-C contacts, the strongest
Hi-C contacts are strongly depleted from the most prominent SLICE
contacts detected in GAM data (Fig. 2c). Finally, we investigated the
detectability of the genomic windows involved in Hi-C- or GAM-specific
contacts, and found that GAM-specific contacts tend to originate
from windows with the strongest detectability whereas Hi-C-specific
contacts tend toinvolve fewer ligation events (Extended Data Fig. 7d).
Strong-and-common contacts are often found in the 20% strongest
Hi-Cand/or GAM contacts (Extended DataFig. 7c), and have adistance
decay that peaksat 300-1,000 kb (Extended Data Fig. 7e). Many of the
strong-and-common contacts are also detected by SLICE analyses of
GAM data and/or by Fit-Hi-C analysis of Hi-C data (Fig. 2c).

Multiplex-GAM detects many active contacts missed by Hi-C
To assess whether the contacts differentially detected by GAM or
Hi-C have important biological roles, we investigated whether they
were enriched for particular genomic features (Fig. 3a). We created
a dataset of features including repeat elements, heterochromatin
marks, transcription factor binding sites, RNA polymerase Il and
transcription-related histone marks (Supplementary Tables 5and 6). We
then counted the number of contacts in each category (GAM-specific,
Hi-C-specific, strong-and-common) between each possible pair of fea-
tures (for example, CTCF-CTCF, p300-Nanog, and so on), and looked
for feature pairs overrepresented (enriched) or underrepresented
(depleted) from GAM-specific or Hi-C-specific contacts relative to
distance-matched random backgrounds (Extended Data Fig. 8a and
Supplementary Table 7).

We found most feature pairs more frequently in the sets of spe-
cific contacts than in the genomic background (Fig. 3b and Supple-
mentary Tables 8 and 9). Most of the feature pairs show a stronger
enrichment in GAM-specific contacts than in Hi-C-specific contacts,
whereas only a small subset of feature pairs are more frequent in
Hi-C-specific contacts. To prioritize the most important of feature
pairs that best discriminate GAM- and Hi-C-specific contacts, we used
arandom forest method (Extended Data Fig. 8b,c). Of the 10 feature
pairs with the highest discriminatory power, six involve the known
architectural factor CTCF, interacting with active features (RNA poly-
merase, p300, enhancers or Oct4). Interestingly, CTCF-CTCF and
CTCF-heterochromatin contacts were also enriched in GAM-specific
contacts. By contrast, heterochromatinregions (thatis, those marked
by H3K9me3 or H4K20me3) were the only features most enriched in
the set of Hi-C-specific contacts (Fig. 3c).

Asanexample, we observe an extensive network of GAM-specific
contacts at the 5’ side of the 11qC locus, spread throughout a
gene-dense region that includes multiple genes with suggested roles
ingeneregulation (/nts2, Med13, Supt4hi, Coil) and mouse embryonic
stem cell pluripotency (Vezf1, Msi2, Trim25, Nog; Fig. 3d). By contrast,
the 3’ side of the 11qC locus harbors a gene-poor region involved in a
large number of Hi-C-specific contacts. Given that the 40 kb windows
forming contacts overlap with multiple different genomic features,
we measured the co-occurrence of feature pairs using UpSet plots
(Fig. 3e). Five of the 10 most frequent groups of feature pairs identi-
fied from GAM-specific contacts overlap at least six different feature
pairslinking CTCF and/or active chromatin, while only one such group
appearsinthetop10 for Hi-C-specific contacts. These results suggest
that GAM-specific contacts are strongly enriched for a specific subset
of CTCF-CTCF contacts that co-occur withenhancers and active genes
and which are underestimated in Hi-C data. In contrast, CTCF-CTCF
contacts that overlap no other annotated features are the third most
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(1); therefore, contacts at the same genomic distance undergo z-score
transformation (2). Hi-C z-scores are then subtracted from GAM z-scores to
generate a delta z-score matrix (3), from which we extract the 5% most differential

contacts between GAM and Hi-C (GAM-specific or Hi-C-specific; 4) and the top
10% of contacts common for both methods (strong-and-common; 5).

b, Interactions identified by SLICE or by Fit-Hi-C shown in the distribution of
deltaz-scores. ¢, Overlap of contacts co-occurring in combinations of the top
20% strongest contacts from GAM and Hi-C, and the 10% strong-and-common set.
Intersection groups are colored by fraction supported by SLICE or Fit-Hi-C.

frequently detected set of contacts found in the strong-and-common
contacts equally detected by both methods.

Activeregions are underrepresented in Hi-C data

Having identified striking enrichments for specific genomic features
among GAM-andHi-C-specificcontacts, weinvestigated whether certain
features might be generally poorly detected by either method. Toiden-
tify such potential blind spots, we developed an approach that counts
the number of GAM-specific, Hi-C-specific and strong-and-common
contacts formed by each window and investigated whether specific
genomic regions were typically more involved in GAM-specific or
Hi-C-specific contacts or vice versa (Fig. 4a). Surprisingly, we find
that blind spot windows are fairly abundant, as shown by the flares
of method-specific contacts at specific genomic regions (Fig. 4b).
Furthermore, blind spot windows are often clustered in specific regions
of the linear genome.

To investigate the properties of the genomic regions underrep-
resented in GAM- or Hi-C-specific contacts, we selected the genomic
windowsinthe top deciles of method-specific, or strong-and-common
contacts. We found that the genomic windows that form many
GAM-specific contacts (here called GAM-preferred regions) contain
more genes and have higher transcriptional activity (Fig. 4c,d) than
genomic regions that form many Hi-C-specific contacts (Hi-C preferred

regions), whichinturnare more frequently associated with the nuclear
lamina'® (Fig. 4e). GAM-preferred regions also tend to be occupied by
CTCF, p300, certain mouse embryonic stem cell transcription factors,
RNA polymerase Il (especially the elongating, S2p form), enhancers and
super-enhancers, and are often classified as compartment A (Fig. 4f).
By contrast, Hi-C-preferred regions showed a slight enrichment for the
heterochromatin-associated histone marks H4K20me3 or H3K9me3,
and are more frequently classified as compartment B. Tracks of all
genomic features considered are also shown across an 80 Mb region
in chromosome 8 in a genome browser visualization (Extended Data
Fig. 9a), and their co-occurrence in the same genomic windows high-
lights the presence of CTCF, transcriptional activity features, including
super-enhancers, in GAM-preferred regions.

Complex contacts cause discrepancies between GAM and Hi-C
We considered whether the enrichment for active features (active
genes, transcription factors, polymerase, enhancers and compart-
ment A) in contacts preferentially detected by GAM could be due to
different levels of contact complexity, that s, to interactions with many
simultaneous interacting partners (Fig. 5a). Complexinteractions have
been predicted tobe underestimated in Hi-C datasets because the liga-
tionstep allows only for the measurement of two interacting partners
per restriction fragment in each cell where the contact is established™.
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Fig. 3| Gene activity at anchor points distinguishes differential contacts.
a, Schematic for detecting feature pair enrichments in GAM- or Hi-C-specific

contacts (red and blue, respectively). Each contact is defined by two genomic
anchor points that we categorized as either positive or negative for peaks of the
respective feature (1). We assessed 105 feature pairs (2) and quantified feature
occurrences at the anchor points, filtering out contacts with no feature pairs (3)

to identify most distinctive feature combinations between GAM-specific and

C-specific contacts (4). TF, transcription factor. b, Top: frequency of feature pairs
inannotated GAM-specific and Hi-C-specific contacts ranked by their presence

inthe genome. Bottom: heatmap track for the Giniimpurity score using the

random forest classification, which was trained to discriminate GAM-specific and
Hi-C-specific contacts. ¢, Feature pairs with the highest discriminatory power.
Top 10 by mean decrease of Gini impurity, allamplified in GAM (top) and the top 3
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contact sets. d, Top: contact matrices of GAM-specific and Hi-C-specific contacts
atan examplelocus (chr.11: 85-95 Mb). Bottom: locations of distinctive features.
e, UpSet plots quantifying the co-occurrence of enriched feature pairs selected in
cfor contacts of each subgroup.

Hi-

Nature Methods | Volume 20 | July 2023 | 1037-1047

1042


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-023-01903-1

a
Delta
GAM-specific
contacts
’ Hi-C-specific
‘e, . contacts
Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bi;17 Bin 8 Bin 9 Bin 10
Freq 4 5 1 2 2 3 2 O Identification of regions
GAM-specific == with most specific
A Frea o o 2 2 1 ] Cor&t.agts from GAM
Hi-C-specific or Hi-
Delta
Contacts strong in
GAM and Hi-C
Freq e . .
Strong-and- 2 5 5 4 5 6 5 4 3 4 Identification of regions
common with most shared
contacts
c f CTCF
@ ) o
@ 4,000 M Hi-C-preferred S 3,000 1
@ regions 9]
© % 3,000 ° 0
Rz Common 2 2,000 -
g ?g 2,000 A regions -§
€ 10004 M GAM-preferred = 1000 7
= regions I
0 A oA
d p300
< 7
S g 2,000
L 10 - €
2 2 3 1500 -
25 4 ) o
Qé 1 A Genomic = 1,000 4
g = o mean 3
=8 £ 500 1
x = =
13 |
[
e Oct4
1.00 5 440/5,926 2000 4
0o 4,792/6,222 ‘E
3% 0.75 1 § 1,500
s L L. Genomic
62 050 2 1,000 -
§_§ 1,955/6,520| LAD freq‘ 8 ‘
£ i = i
<z 0% I £ 500 I
0 1 0

Fig. 4| Genomic windows enriched for Hi-C- and GAM-specific contacts are
clusteredin the genome. a, Strategy for identifying genomic regions forming
many contacts specific to either GAM or Hi-C. We counted how often a genomic
regionwas an anchor pointin the set of GAM-specific contacts, Hi-C-specific
contacts or strong-and-common contacts. The 10% of genomic windows with
the highest absolute difference between the number of GAM-specific and Hi-
C-specific contacts were classified as Hi-C-preferred regions or GAM-preferred
regions, respectively. Similarly, the top 10% of strong-and-common contacts
were used to define common regions that participate to a similar extent in
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To investigate the relationship between interaction complexity
and method-specific blind spots, we used SLICE to calculate the prob-
ability of interaction for all possible sets of three 1 Mb windows lying
on the same chromosome (that is, the Pi,, for all possible triplets of
loci A, B and C)*. We find that windows in the A compartment indeed
form more triplets than windows in the B compartment (Fig. 5b and

Extended Data Fig. 10). Interestingly, GAM-preferred regions formed
more triplets thancommon or Hi-C-preferred regions, even when com-
paring within the same compartment. Regions with active chromatin
marks formed more triplets than regions marked by heterochromatin,
with the strongest effect seen for the elongating, S2-phosphoisoform
of RNA polymerase Il and for super-enhancers (Fig. 5¢), inline with our
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previous work thatidentified long-range chromatin contacts between
super-enhancers and actively transcribed genomic regions across tens
of megabases’. These results suggest the existence of abundant chro-
matin contactsinwhich many active regions interact simultaneously,
which are commonly overlooked by ligation-based methods, but are
readily detected by GAM and FISH®.

Finally, we examined whether high interaction complexity artifi-
cially deflates pairwise contact probability as measured by Hi-C, given
that each DNA fragment is predicted to pick up a given interacting
partner with lower probability in complex contacts than in simple
contacts (Fig. 5d)". We correlated pairwise contacts from GAM and
Hi-C at aresolution of 1 Mb and found that regions with equivalent
strength of pairwise contacts in GAM had a broad range of ligation
frequencies in Hi-C. Regions that form many triplets (that is, that are
more complex) had lower contact strength in Hi-C data. Conversely,
regions that form few triplets had higher contact strength in Hi-C
(Fig.5d,e), demonstrating that complexity explains some of the diver-
gence in contact frequencies measured by Hi-C or GAM. Notably, this
effectalso undermines attempts to predict the formation of complex
interactions from Hi-C based only on the transitivity of pairwise con-
tacts. For example, if locus A interacts with B, B with C, and A with C,
simple transitivity predicts the formation of an A-B-C triplet detected
with afrequency at most as high as at the lowest pairwise contact fre-
quency between any of the locus pairs. Direct comparisons between
thetripletsidentified in GAM data (top 2% most statistically significant)
withthetop 2% Hi-Ctriplets, which are computed assuming transitivity,
show little overlap, withless than15% of true triplets detected by GAM
coinciding with triplets predicted based on transitivity from pairwise
Hi-C maps (Fig. 5f) or single-cell Hi-C maps' (Fig. 5g). Therefore, tran-
sitivity of pairwise contacts cannot be used to infer multiway contacts.

Discussion

The three-dimensional structure of the nucleus is inextricably linked
with its functional roles, including gene regulation, DNA replication
and the DNA damage response. Consequently, molecular techniques
for measuring the 3D folding of chromatin inside the nucleus have
been instrumental in advancing our understanding of nuclear func-
tion over the past decade’. Here, we have developed multiplex-GAM,
anew variantof genome architecture mapping that enables faster and
more cost-effective analysis of chromatin folding genome-wide than
the original version®. We also expand the mathematical model SLICE
by incorporating new experimental parameters (number of nuclear
profiles per sample, nuclear ellipticity and cryosection thickness).
Finally, we use the larger GAM dataset containing information from
1,250 mouse embryonic stem cells for detailed comparisons of the con-
tacts captured by GAM and Hi-C, the most frequently used genome-wide
method for chromatin contact analysis®.

We find that GAM and Hi-C detect similar TADs, large folded
domains that are thought to constrain gene regulatory elements and
form afundamental unit of chromatin organization®*">, Many strong
contacts, including a large proportion of CTCF-mediated loops, are
also detected by both methods. By careful examination of finer-scale
differences, we identify that chromatin contacts given more weight
by GAM frequently connect genomic loci bound by enhancers, key
mouse embryonic stem cell transcription factors, RNA polymerase
Il and CTCF, whereas contacts that feature more prominently in Hi-C
matrices connect regions marked by the heterochromatin-associated
histone modifications H3K9me3 and H4K20me3.

Welooked for regions of the genome that consistently form more
contacts in GAM datasets than in Hi-C datasets and found that these
regions are located in large genomic regions bound by the same acti-
vating transcription factors identified in the GAM-specific contacts.
In our previous work, super-enhancers were the genomic regions
most enriched in complex, multi-partner interactions, together with
the most actively transcribed regions®. We now extend this finding to

show that the contacts underestimated in Hi-C often involve regions
that form more complex interactions in GAM. Theoretical work has
previously suggested that ligation-based methods, such as Hi-C, under-
estimate contacts between multiple partners, given that ligation cap-
tures only two or a few contact partners at a time". Our results here
show that ligation frequencies measured by Hi-C are systematically
lower between regions that form complex interactions, and provide
experimental evidence to support the effect of ligation on the under-
estimation of complex contacts.

Ligation is not the only potential source of difference between the
two methods, given that GAM and Hi-C also make use of quite different
fixation protocols. The choice of fixation protocol has been shown to
affect the proportion of informative ligation events between different
chromatin conformation capture experiments'®, and it may also influ-
ence the contacts of genomic regions with different protein composition
and/or compaction in a single experiment'®, The digestion of nuclear
chromatin necessary for preparing Hi-C libraries has also been shown to
disruptnuclear structure”, whereas GAM uses fixation protocols specifi-
cally chosen to maximize the preservation of nuclear architecture and
retention of nuclear proteins® and RNAs?. Ultimately, formaldehyde
fixation remains a‘black box’and will continue to complicate interpreta-
tion of the most widely used methods for measuring chromatin structure
(including microscopy methods such as FISH)*. Live-cellimaging meth-
ods circumvent the need for fixation and will provide valuable orthogonal
data, butthese methods currently require recruitment of large numbers
of fluorophores, which may themselves influence folding®. Variants of
chromatin conformation capture have alsobeen reported with adifferent
order of steps* or that do not use fixation, but omission of the fixation
step entirely hasavariableimpact onsignal-to-noise ratio®*, Ultimately,
it should eventually be possible to shed light on the effect of fixation by
extending GAM to unfixed nuclei through sectioning of vitrified samples.

Another factor that may influence method-specific contacts is
data processing. It has recently been shown that Hi-C detects fewer
contacts between regions of condensed chromatin due to a lower
accessibility of these regions to restriction enzyme digestion”. How-
ever, matrix-balancing algorithms commonly used to normalize Hi-C
data can overcorrect for this effect, leading to an aberrantly high fre-
quency of contacts between condensed domains. Consistent with these
results, we find that regions of the genome that consistently form more
contactsinnormalized Hi-C are enriched for heterochromatin marks,
and link two regions with low detectability (thatis, those most likely to
be overcorrected by matrix balancing). We have found the bias in raw
GAM datasets to be uniformly lower than that found in raw Hi-C* and
expect that improved normalization algorithms will bridge some of
the current divergences between the two methods” .

Ourwork underscores previous findings that complex, simultane-
ous interactions between many genomic regions are a pervasive and
little-studied feature of mammalian genome architecture®”, although
their overall prevalenceis stillasubject of debate®. Enhancer-binding
transcription factors and RNA polymerase Il have both beenreported
toformnuclear clusters that could serve as nucleating agents for such
multi-partner interactions®>*, More recently, there has been a surge
ofinterestin phase-separated nuclear bodies, which are suggested to
facilitate highlocal concentrations of chromatin-interacting proteins
and/or transcriptional regulators®. The clear expectationis that these
condensates should bring together multiple interacting genomic
partners, inmuchthe same way as ribosomal DNA repeats are brought
togetherin the nucleolus®. Heterochromatin has also been reported to
form phase-separated condensates®; however, we find these regions to
have lower-complexity specific interactions, potentially highlighting
ashorter-rangerole for these interactions.

In conclusion, our development of multiplex-GAM, an improved
protocol forrapid, cost-effective generation of GAM datasets, enabled
us to obtain a deeper GAM dataset for mouse embryonic stem cells
andto explore the similarities and differences between GAM and Hi-C.
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Reassuringly, the two methods paint broadly similar pictures of nuclear
architecture, in particular the distribution of TADs, the segregation of
nuclear chromatininto A and Bcompartments and theimportance of
CTCF for shaping chromatininteractions. There are differences, how-
ever, with GAM detecting more, stronger and more complex contacts
between active chromatin regions, and across longer distances, and
Hi-Cemphasizing less-complex contacts within silent chromatin. These
results highlight the utility of GAM for studying contacts of potential
generegulatory functions, particularly inhuman disease, where such
contacts may be formed only in rare cell populations inaccessible to
population Hi-C. We have recently applied multiplex-GAM to differ-
ent neuronal subtypes in brain tissues, and discovered unforeseen
events of extensive chromatin decondensation at long neuronal genes,
and abundant cell-type specific contacts that contain differentially
expressed genes and accessible regulatory elements spanning several
megabases’’. GAM requires only a few hundred cells, which is of par-
ticular relevance to human genetics, where researchers need to assay
the 3D contacts made by disease-linked sequence variantsin specific,
often rare cell types impacted by the disease (for example, neuronal
subtypesin neurodegenerative diseases).
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Methods

Identification of cellular profiles not intersecting the nucleus
Cryosections wereincubatedin 2.5 uM SYTO RNASelect solutionin PBS
(ThermoFisher, S32703) for 20 min at room temperature (hereafter
17-22°C), followed by a 5 min wash in PBS. After incubation, the cells
were counterstained with 0.5 ug mI™ DAPlin PBS, and thenrinsed in PBS
and water. Coverslips were mounted in Mowiol 4-88 solution (Merck
81381) in 5% glycerol, 0.1 M Tris-HCI, pH 8.5.

Cryosection staining for GAM

Eosine. Cryosections were washed (three times, 15 minin total) in PBS,
rinsed inwater and incubated for 3 mininal% Eosine Y solution (Merck
230251; dissolved in 1% glacial acetic acid in water) or 0.5% Eosine Y
solution (dissolvedin 0.25% glacial acetic acid, 70% ethanol in water).
After incubation the cryosections were briefly washed three times in
water and air dried for 5 min at room temperature.

Propidium iodide. Cryosections were washed (three times, 15 min in
total) in PBS, rinsed in water and incubated for 10 minin a10 pg ml™
propidiumiodide solution (Sigma-Aldrich P4864 diluted in PBS). After
incubation the cryosections were briefly washed three times in water
and air dried for 5 min at room temperature.

Crystal violet. Cryosections were washed (three times, 15 minin total)
in PBS, rinsed in water and incubated for 10 min in a 1% crystal violet
water solution (Merck V5265). Afterincubation the cryosections were
briefly washed three times in water and air dried for 5 min at room
temperature.

Cresylviolet. Cryosections were washed (three times, 15 minin total)
in PBS, rinsed in water and incubated for 6 min in a 0.1% cresyl violet
(Sigma-Aldrich, C5042) water solution. After incubation the cryosec-
tions were briefly washed three times in water and air dried for 5 min
atroomtemperature.

SYBR Gold. Cryosections were washed (three times, 15 minintotal) in
PBS, rinsed in water and incubated for 10 min with 1:1,000 or 1:5,000
dilution of SYBR Gold (ThermoFisher, S11494) in water. After incuba-
tion the cryosections were briefly washed three times in water and air
dried for 5 min at room temperature.

Celllines

Soxl1-green fluorescent protein (Sox1-GFP) knock-in (cell line 46C)
mouse embryonic stem cells derived from the parental E14tg2a line
were used in this study®. Identity was confirmed at the time of cry-
oblock creation by morphology and by confirming GFP expression
after neural differentiation. Cells were routinely tested for Mycoplasma
contamination.

Updated GAM protocol

Mouse embryonic stem cells were grown and cryoblocks prepared as
previously described®. Cryosections of 220 nm (green) were cut with
glass knives using a Leica FC7 ultracut cryotome, collected in sucrose
droplets (2.1MinPBS) and transferred to steel frame PEN (polyethylene
naphthalate) membrane slides (Leica) for ultraviolet treatment for
45 min prior to use. Slides were washed in sterile-filtered (0.2 um syringe
filter) 1x PBS (three times, 5 min each), then with sterile-filtered water
(three times, 5 min each). Cresyl violet staining was performed with
sterile-filtered cresyl violet (1 % w/v in water, Sigma-Aldrich, C5042)
for10 min, followed by two washes with water (30 s each) and air dried
for 15 min. Nuclear profiles were laser microdissected into adhesive
8-strip laser capture microdissection collection caps (Zeiss AdhesiveS-
trip 8C opaque 415190-9161-000), with four profiles dissected into
each cap. Caps were stored at -20 °C until whole genome
amplification.

Whole genome amplification of DNA from microdissected nuclear
profiles was performed with the Sigma WGA4 kit using aliquid handling
robot (Microlab STARIet, Hamilton). We note that several consecu-
tive Sigma WGA4 kits stopped working in 2017 for GAM data produc-
tion, and we currently recommend a more affordable in-house whole
genome amplification protocol®. A total of 14.5 pl lysis and fragmenta-
tion master mix (13 pl H,0, 1.4 pul lysis and fragmentation buffer, 0.09
ul proteinase K) was added to each well of a 96-well plate, caps with
microdissected material were used to close the wells and then the plate
was inverted and centrifuged upside down at 3,000 xg for 2 min such
that the fragmentation master mix was collected in the cap. Plates were
incubated upside down for 4 hat 50 °C theninverted and centrifuged
the right way up at 3,000 xg for 2 min to collect the extracted DNA in
the bottom of the well. Samples were then heat inactivated at 99 °C for
4 minthen cooled onice for2 min. Atotal of 4.95 pllibrary preparation
master mix (3.3 pllibrary preparation buffer, 1.65 pl library stabilization
solution) was added to each sample, incubated at 95 °C for 2 min and
cooled onice for 2 min then centrifuged at 3,000 xg for 2 min. A total
of 4.5 pl library preparation enzyme (diluted threefold with H,0) was
added to each tube; then samples were incubated at 16 °C for 20 min,
then 24 °C for 20 min, 37 °Cfor 20 min and 75 °C for 5 min. Finally, 85 pl
amplification master mix (11 pl amplification buffer, 66.5 plH,0, 7.5 pl
whole genome amplification polymerase) was added to each tube,
and the samples were amplified by PCR (initial denaturation at 95 °C
for 3 min, then 24 cycles of denaturation at 95 °C for 30 s and anneal-
ing-extension at 65 °C for 5 min).

Amplified DNA was purified using Ampure XP beads (Beckman
Coulter, A63880). The beads (61.5 pl) were mixed with 77 pl amplified
sample in a fresh 96-well plate and incubated at room temperature
for 5 min. The plate was placed on a magnetic stand for 5 min; then
the supernatant was discarded and the beads were washed twice with
200 pl freshly prepared 80% ethanol. After the second ethanol wash
was discarded, the beads were air dried for 5 minand thenresuspended
in 45 pl H,0 and incubated at room temperature for 5 min. The plate
was then placed on amagnetic stand and the supernatant transferred
to afresh 96-well plate, ready for next-generation sequencing library
preparation.

Libraries were prepared using the lllumina Nexteralibrary prepa-
ration kit following the manufacturer’s instructions. The DNA con-
centration of the final libraries was determined using a Picogreen
fluorescence assay (ThermoFisher), and libraries were pooled at equi-
molar concentration, ready for sequencing on an Illumina NextSeq
machine.

GAM data processing

Multiplex-GAM sequencing reads were aligned to the mouse mm9
genome assembly using Bowtie2 v2.1.0, and PCR duplicates were fil-
tered using Samtools v0.9.0. Positive 40 kb windows were called by
GAMtools v1.1.0 using a fixed read threshold of 4. The value of 40 kb
was chosen for further analysis because it was the highest resolution at
which the efficiency of detection (as calculated by SLICE) was greater
than 80%, and >80% of 40 kb windows were detected at least 25 times
inthe multiplex-GAM dataset. Normalized linkage disequilibrium (D")
matrices at 40 kb genomic resolution were generated by GAMtools*.
Further data analysis was carried out using Python v.3.7.

SLICE analysis

To convert pair or triplet co-segregation frequencies to interaction
probabilities (Pi), we computed the segregation probabilities v; for
asingle locus under an assumption of spherical shape, with an aver-
age nuclear radius R (which was estimated using cryosection images
as being equal to 4.5 um)°>. The co-segregation probabilities u; for
pairs of loci in a not-interacting state have been estimated from GAM
segregation data; for interacting loci we estimated co-segregation ¢;
probabilities by assuming their physical distance as being less than
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the slice thickness (h ~ 220 nm). From linear combinations of these
probabilities, using the ‘mean field’ approximation, we computed the
probability of locus segregationin a nuclear profile for pairs (V;;) and
triplets (N;;,; Supplementary Note).

The expected number of nuclear profiles M; with 0,1 or 2 loci is
therefore computed from N,; probabilities. From these, in turn, it is
also possible to estimate the co-segregation ratio M,/(M,+ M), that
is, the fraction of non-empty tubes that have two loci. Given that the
equations describing the tube content depend on the interaction prob-
ability Pi, the latter can be estimated by fitting the experimental value
of co-segregation ratio (Supplementary Note). The same procedure has
been used to estimate the probability of triplet interactions. Significant
SLICE contacts are those with a co-segregation ratio greater than the
95th percentile of the expected distribution of co-segregation ratios
for two non-interacting loci at the given genomic distance.

To apply SLICE to the merged multiplex-GAM dataset, we used
amean field approximation. It consists of introducing a non-integer
number of nuclear profiles per tube, obtained as the average of the dif-
ferent numbers of nuclear profiles in the different datasets, weighted
with the corresponding number of tubes (Supplementary Note).

Creation of in silico merged multiplex-GAM data

Segregation tables (in which each row corresponds to agenomic win-
dow, each column to a GAM library, and the entries indicate the pres-
enceor absence of eachwindowineach nuclear profile) were generated
fromINP GAM libraries. A new segregation table was then generated by
randomly selecting two, three or four columns from the original table
(thatis2/3/4xINPlibraries), combining theminto asingle columnsuch
that the new columnis positive if any of the original columns were posi-
tive,and removing the columns from the original table. This procedure
was performed iteratively until all columns from the original table had
beencombined. The new, insilico combined table was then used for the
calculation of normalized linkage disequilibrium matrices.

SLICE enrichment tests

Enrichment of active/enhancer/inactive/intergenic windows in pair-
wise SLICE interactions and analysis of triplet SLICE interactions was
carried out as previously described®.

SLICE false discovery rate thresholding

Toidentify the highest-confidence individual interactions, we used the
Rimplementation of the Benjamini-Hochberg procedure to adjust the
Pvalues for two-way interactions obtained from SLICE with a threshold
of 0.1 (ref. 41).

TAD calling
We applied the insulation square method** to GAM matrices of normal-
ized linkage disequilibrium scores and to Hi-C matrices of normalized
ligation frequencies (GSE35156)° to exclude potential effects of using
different TAD callers for GAM and Hi-C. We adjusted the insulation square
method to also consider negative values from GAM normalized linkage
disequilibrium and appliedit to contact matrices at aresolution of 40 kb
foreach chromosome (using the parametersimmean, ids 50000, nt 0.1,
insulationDeltaSpan 200000, yb 1.5, bmoe 3). Although the TAD sizes
were not associated with the size of the insulation square for Hi-C data
(reaching a plateau at a square size of around 500 kb), increased sizes
of the insulation square produced larger TADs for GAM data. Here, we
selected awindow size of 400 kb for GAM and Hi-C data, which maximizes
theagreementbetween the TAD sets and also to the hidden Markov model
(HMM) TAD boundaries published for the Hi-C dataset®. Next, we used
the merge command frombedtoolsv2.27.1(ref. 43) to check whether the
obtained TAD boundaries were touching or overlapping, and merged the
border ranges while retaining their maximumboundary score.

We obtained published single-cell Hi-C data for diploid mouse
embryonic stem cells kept in serum media (GSE94489)” and created

pseudobulk contact matrices at a resolution of 40 kb by pooling
increasing subsets of 50 cells (50, 100, 150) and all 588 cells. Insula-
tion profilesand TAD boundaries were computed using the insulation
square method as described.

To check for overlapping boundary positions between two data-
sets we applied bedtools closest in both directions and considered
boundaries as matched when their reported ranges were overlapping
or touching (distance <1).

We checked for abundance of features at the TAD boundaries,
centered at the boundary midpoints. For a given genomic mark, we
analyzed the mean signal within 500 kb around the identified bound-
ary midpoint in windows of 10 kb resolution using bedtools. We esti-
mated the background by randomizing the boundary positions using
chromosome-wise circular shifts.

Generating peak and feature data

We mapped genomic and epigenomic read data to the NCBI Build 37/
mm?9 reference genome using Bowtie2 v2.1.0 (ref. 44). We excluded
replicated reads (that is, identical reads mapped to the same genomic
location) that were found more often than the 95th percentile of the
frequency distribution of each dataset. We obtained peaks using BCP
v1.1(ref.45) in transcription factor mode or histone modification mode
with default settings. A full list of all features analyzed in this study is
given in Supplementary Tables 5 and 6. We computed mean counts of
features for all genomic 40 kb windows using the bedtools window and
intersect functions.

PCA compartments
We computed eigenvalues and inferred compartments on GAM and
Hi-C dataas described>” or used published compartment definitions®.

Identification of differential contacts

GAM and Hi-C use two different approaches to assess chromatin struc-
ture and measure underlying contact frequencies, which results in dif-
ferent distributions for GAM D’values (continuous values resembling
locus proximity in space) and log-scaled Hi-C frequency values (discrete
cross-ligation counts)’.

To compare contact intensities between the methods over the
whole genome, and define strong contacts seen in both or at signifi-
cantly differentlevels by either of the two methods, we developed a new
method foridentifying differential regions between the two matrices.
To avoid amplification of spurious contacts due to potential under-
sampling and zero inflation, we limited our analysis to a4 Mb genomic
distance. From GAM contact data at 40 kb resolution, we removed all
contacts with negative D’values. We also excluded all contacts estab-
lished between potentially oversampled or undersampled genomic
windows. Here, we used the percentage of slices with a positive window
(window detection frequency) as a proxy for detectability and removed
windows with a window detection frequency of less than 5% or above
10%. For the Hi-C data, we excluded all contacts for which zero ligation
events were detected. All contacts excluded from either dataset were
not considered in the definition of differential contacts.

To compare the contact intensities from GAM and Hi-C, we evalu-
atedanumber of linear transformations, namely z-score transformation,
observed over expected scores and rank transformation. For every chro-
mosome, we applied z-scores and observed over expected transformation
to GAMand Hi-C contactsatagiven distanced. Wefound that theresulting
intensity distributions of the delta matrices can be parameterized with
very good fit toanormal distribution for z-scores and alogistic distribu-
tion for observed over expected scores (fitdistrplus R package), which
enables selection of the most differential contacts located within the
expected 5%and 95%tails of the fitted distributions. We also obtained the
contacts with strongest differencesin their ranks by sorting all contacts
based ontheir valueintensity and selecting the top and bottom 5% based
ontheir rank difference from each genomic distance.
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We decided to define Hi-C-specific and GAM-specific contacts
by the z-score approach, given that the 5% result sets from all trans-
formations yielded comparable set sizes with a high mutual overlap
(-300,000, Extended Data Fig. 7), while the z-score-derived sets were
the least affected by under-detected regions and accounted for the
observed decay of mean contact frequency over distance (Extended
Data Fig. 7). In addition to the 5% Hi-C-specific and GAM-specific
contact sets with 231,164 and 265,166 contacts, respectively, we also
extracted two contact sets from 10% tails with 473,884 and 499,198
contacts, respectively (Supplementary Table 7).

In addition to identifying the most differential contacts, we
defined a set of strong-and-common contacts that differ very little in
value intensities between GAM and Hi-C. We first ranked all contacts
withadeltaz-score oflessthan1.0 accordingto the lower z-score value
from GAM and Hi-C, and extracted the strongest 5% or 10% of con-
tacts for each chromosome (total of 148,536 and 297,064 contacts,
respectively).

We used the definition of significant Dixon Hi-C contacts published
by Fit-Hi-C*°. We selected all cis contacts from the pre-processed data
(two-pass spline interpolating on 10 consecutive restriction enzyme
fragments cut by Ncol) with genomic separation below 4 Mband a g
value < 0.05. Next, we assigned the contactsinto 40 kb windows based
on their fragment midpoints.

Feature enrichments within differential contacts

We queried whether contacts identified to be specific for GAM and
Hi-C are associated with specific biological features (Extended Data
Fig. 8a) relative to those obtained from randomized data. First, we
produced three permutations for each of the foreground sets by ran-
dom sampling the same number of contacts with the same genomic
distance out of all contacts of the same chromosome not contained
inthe respective foreground set. Next, we established a feature table
listing the presence or absence of 14 selected featuresin 40 kb windows
(Supplementary Table 6) and checked for the pairwise presence of
105 homotypic and heterotypic feature combinations in the subsets
of Hi-C-specific, GAM-specific and strong-and-common contacts.
Here, we annotated 98,600 (42%), 164,946 (62%) and 78,919 (53%)
of 5% contact sets with the presence of any feature pair, respectively
(Supplementary Table 7).

To determine which feature combinations are amplified at contact
anchor points, we computed the relative occurrence (frequency of
feature pair <i,j>in total contact set) for each feature pairin the contact
set. Weranked the results by descending Giniimpurity obtained using
the random forest classification, which was trained to distinguish the
annotated GAM-specificand Hi-C-specific contacts based on the pres-
ence of associated feature pairs (sklearn 0.19.2, 500 trees with fivefold
cross validation, max_features as sqrt(num_features), criterion = ‘gini’,
nomaxdepth). For furtherinvestigation we selected the top 10 feature
pairs most informative for binary classification, omitting enriched
feature pairs of lower genomic abundance. Given that feature pairs
with higher frequency in Hi-C than in GAM are not part of this subset,
we added the top three feature pairs showing the strongest amplifica-
tionin Hi-Crelative to GAM (Supplementary Table 8).

Different features can often be found to be co-present at the same
anchor points of acontact. We applied the UpSetR package* to the 5%
sets of contacts from GAM-specific, Hi-C-specific, strong-and-common,
and the genome-wide background. We plotted the abundance of a
feature pair according to the percentile of feature occurrence, along
with the number of observed co-localization events between pairs of
features. We established the genome-wide background set by randomly
selecting 5% of all non-zero contacts observed by GAM and Hi-C.

Analysis of GAM-preferred and Hi-C-preferred regions
We assessed the preference towards contributing to GAM-specific
contacts or Hi-C-specific contacts for each genomic 40 kb window.

First, we counted how often awindow was an anchor point for contacts
of the GAM-specific or Hi-C-specific subsets. Next, we calculated the
absolute difference betweenboth counts and estimated a90% percen-
tile cut-off for each chromosome. We considered genomic windows
above this threshold to hold either mostly GAM-specific contacts or
mostly Hi-C-specific contacts. Intotal, this resulted in 6,520 windows
being labeled as GAM-preferred regions by having predominantly
GAM-specific contacts,and 5,926 as Hi-C-preferred regions withamuch
higher count of Hi-C-specific contacts over GAM-specific contacts. Sim-
ilarly, we identified genomic regions that are equally well detected by
GAM and Hi-C (common). Here, for each genomic window we counted
the number of anchor points from contacts of the strong-and-common
setand selected the top 10% genomic windows with the highest counts
from each chromosome.

Next, we assessed gene density and transcriptional activity in
groups of genomic regions using published gene annotations and
mESC-46C TPM values*®. We transferred the provided mm10 gene
positions tomm9 using UCSC liftover*’ and assigned genes to genomic
windows of 40 kb using bedtoolsintersect. We annotated lamina asso-
ciations within 40 kb genomic regions according to mESC LaminB1
HMM calls'®. The genome-wide LAD ratio was computed as the num-
ber of positive HMM state calls over the total number of windows.
For markers of transcription factors, histone modifications and RNA
polymerase Il states, we used 40 kb window classification for peak and
feature presence (Supplementary Table 5) and counted the number of
positive windows in each subset.

Analysis of interaction complexity

We used SLICE to compute the three-way probability of interaction
(Pi,sc) and identified 1 Mb intrachromosomal triplets from the GAM-
1,250 dataset where Pi,zc < 0.05 (Supplementary Note). In this work,
we define complexity as the mean number of triplets with Pi,z. < 0.05
over all combinations of Band C windows for agiven Awindow (where
complexity is calculated for a genomic region, Fig. 5b,c), or the mean
over all C windows for a given A and B window (where complexity is
calculated for a pairwise contact, Fig. 5d,e).

For each genomic window labeled as a Hi-C preferred region,
common region or GAM-preferred region, we checked for the com-
partmentassignment and correlated the outcome with the complexity
at the 1Mb genomic window. Similarly, we estimated the complexity
of genomic and epigenetic features by categorizing 40 kb genomic
windows according to the presence of transcription factors, histone
modifications and RNA polymerase Il states, and presenting the com-
plexity of the respective 1 Mb genomic window.

We identified potential Hi-C triplets using matrices of normal-
ized ligation frequencies at1 Mb binning®. On the basis that if a triplet
(ABC) is formed, the three component pairwise interactions (AB, AC,
BC) should all be detected by Hi-C, we therefore estimated Hi-C tri-
pletintensity as the minimum ligation frequency of the three com-
ponent pairwise interactions making up the triplet. We then selected
the strongest 2% of all Hi-C triplets from every genomic distance for
which there were at least 500 possible triplets.

To identify triplet contacts from single-cell Hi-C data, we down-
loaded 10 haplotype-resolved 3D models of chromatin folding in sin-
gle cells generated by Dip-C (GSE117109)" analysis of diploid mouse
embryonic stem cells kept in serum media (GSE94489)’. We used the
bedtools window to generate alist of 1 Mb bins from mm®9, used liftOver
to converteach binto mm10 coordinates and calculated the 3D position
asthe centroid of all overlapping 10 kb bins from the modeling data. For
each chromosome, we examined 20 structures (maternal and paternal
chromosomes for each of 10 cells). We reasoned that if three loci form
atripletin single cells, then the pairwise distances between the three
loci should all be small. We therefore scored every possible triplet by
calculating the maximum of the three pairwise distances (AB, AC, BC)
ineach modelindividually and then taking the minimum score across
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all20 models. We selected the best triplets as the lowest 2% from every
genomic distance for which there were at least 500 possible triplets.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

GAM sequencing datagenerated for this study are available from GEO
(GSE166381). The original GAM sequencing data’ are available as a sepa-
rate accession (GSE64881). Other datasets used in the study are listed
in Supplementary Table 5, and additional intermediate data are avail-
able on GitHub (https://github.com/pombo-lab/multiplex-gam-2023/
tree/main/data).

Code availability

GAM sequencing samples were processed using GAMtools v1.1.0, which
isavailable at https://github.com/pombo-lab/gamtools/releases/tag/
v1.1.0. Custom code used for data analysisis available at https://github.
com/pombo-lab/multiplex-gam-2023.
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Extended Data Fig. 4 | Optimizations to the GAM protocol. a, Comparison of
the original (black and blue lettering) and multiplex (black and red lettering)
GAM protocols. WGA: Whole Genome Amplification. b, Effect of various
staining protocols on downstream DNA extraction. Top row: propidiumiodide
(n=21each), SYBR® Gold (n=16 stained; 14 unstained) and Eosin (n=16 stained;
19 unstained); bottom row: crystal violet (n=16 stained; 15 unstained) and
cresyl violet (n=16 stained; unstained the same as for crystal violet). Red lines
indicate the median percentage of mapped reads per GAM-3NP sample. ¢, Top
panel: cryosection thickness can be identified from the section’s color. Bottom
panels: cresyl violet staining improves the visualization of NPs during laser
microdissection. Scale bar 10pm. d, Top: unstained cryosections from mES
cells. Individual NPs are outlined by dashed white lines. White arrows indicate

typical background (air bubbles) in the microdissection membrane. Bottom:
Cresylviolet stains both cytoplasm and nucleoplasm in mES cell cryosections

as visualized by brightfield microscopy, and therefore does not distinguish
cellular profiles thatintersect the nucleus. Scale bar 10pm. e, Example mES cell
cryosection visualized by confocal fluorescence microscopy. DNA stained with
DAPIlis shown in blue and RNA stained with SYTO® RNASelect dye is shown in
green. White arrows indicate cellular profiles that do not intersect nuclei (n=647
profiles intersect the nucleus of 857 profiles analyzed; Supplementary Table 10).
Scale bar 10pm. f, Binomial distribution showing the expected number of profiles
per GAM sample thatintersect nuclei across a collection of samples each with
four cellular profiles.
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Extended Data Fig. 6 | Similarity at TAD level for GAM, bulk Hi-C and sc-
Hi-C. a, Comparison of topological associated domains (TADs) defined by the
insulation score method in GAM (top) and Hi-C® (bottom). b, Overlap of TAD
boundaries detected in GAM-1250 (red) and Hi-C (blue) as well as boundaries
detected in sc-Hi-C contact maps produced from 50 cells, 100 cells, and all 588
cells’. ¢, Overlap between TAD boundary calls from INP GAM data with Hi-C
dataand full 1+3NP GAM-1250 data. d, Boundary strength (drop of insulation)
measured for GAM (red), Hi-C (blue) and sc-Hi-C contact maps produced from

50 cells, 100 cells, and all 588 cells was calculated for TAD boundaries which are
shared between the sets (dark bars) or only found in asingle set (light bars).

e, Mean frequency and 95% bootstrap Cl (shaded) of RNA-Pol I, transcription
factor occupancy and epigenetic marks centered at TAD boundary sites.
Common, Hi-C-specific, GAM-specific boundaries are shown in black, dark blue,
andred, respectively, gray values are based on shuffled boundary positions of
each category.
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Extended Data Fig. 7 | Intrinsic properties of method-specific contact
subsets and contacts common between GAM and Hi-C. a, Distribution by
genomic distance of GAM-specific (red) and Hi-C-specific (blue) contacts. b,
Upset plot presenting the agreement between sets of differential contacts
obtained by different data transformations (Z-score transformation; Observed
over expected, O/E; Rank transformation). The fraction of contacts in the
intersections designated as GAM-specific or Hi-C-specificis colored in red and
blue, respectively. ¢, Decile distributions of contact intensities before and after
z-score transformation for the sets of GAM-specific contacts, Hi-C-specific

contacts, and Strong-and-common contacts. d, Detectability of GAM-specific
contacts, Hi-C-specific contacts, and Strong-and-common contacts. Windows
aresplitinto decile groups based on their detectability. Heatmaps show the log-
scaled number of contacts connecting windows in different detectability deciles.
Top: Deciles calculated by Hi-C detectability (total number of ligation events per
window). Bottom: Deciles calculated by GAM detectability (window detection
frequency). e, Distribution by genomic distance of SLICE interactions (red) and
strong-and-common contacts (orange).
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Extended Data Fig. 8 | Annotation pipeline for feature pair presence and
evaluation of sets with 10% of strongest contacts. a, Strategy for detecting
enrichment of feature pairs within sets of specific contacts. b, Pairwise
differences of feature pair frequencies observed in the 10% sets of GAM-specific
and Hi-C-specific contacts relative to their relative enrichment. Differences are
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Data exclusions | GAM datasets with <15% mapped reads were excluded from further analysis (Beagrie et al. 2017), as were all samples in experimental
batches that were deemed to have failed (e.g. those stained with SybrGold, Extended Fig 4b). All GAM samples (including all excluded
samples) are outlined in Supplementary Table 2 and all sequencing data is available under GEO accession GSE166381.

Replication GAM datasets were derived from two biological replicates of mouse ES cells, independently grown at different times. Details of which samples
belong to each replicate can be found in Supplementary Table 2. No significant difference was found between the two biological groups of
samples.
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