2,425 research outputs found

    A rule-based semantic approach for automated regulatory compliance in the construction sector

    Get PDF
    A key concern for professionals in any industry is ensuring regulatory compliance. Regulations are often complex and require in depth technical knowledge of the domain in which they operate. The level of technical detail and complexity in regulations is a barrier to their automation due to extensive software development time and costs that are involved. In this paper we present a rule-based semantic approach formulated as a methodology to overcome these issues by allowing domain experts to specify their own regulatory compliance systems without the need for extensive software development. Our methodology is based on the key idea that three semantic contexts are needed to fully understand the regulations being automated: the semantics of the target domain, the specific semantics of regulations being considered, and the semantics of the data format that is to be checked for compliance. This approach allows domain experts to create and maintain their own regulatory compliance systems, within a semantic domain that is familiar to them. At the same time, our approach allows for the often diverse nature of semantics within a particular domain by decoupling the specific semantics of regulations from the semantics of the domain itself. This paper demonstrates how our methodology has been validated using a series of regulations automated by professionals within the construction domain. The regulations that have been developed are then in turn validated on real building data stored in an industry specific format (the IFCs). The adoption of this methodology has greatly advanced the process of automating these complex sets of construction regulations, allowing the full automation of the regulation scheme within 18 months. We believe that these positive results show that, by adopting our methodology, the barriers to the building of regulatory compliance systems will be greatly lowered and the adoption of three semantic domains proposed by our methodology provides tangible benefits

    A DYNAMIC GENERAL EQUILIBRIUM ANALYSIS OF U.S. BIOFUELS PRODUCTION

    Get PDF
    With the rising global interest in energy security and climate change mitigation, biofuels have gained the prominent attention of researchers and policy makers. The U.S. has emerged as the leading producer of biofuels and is aiming for achieving a target of 36 billion gallons of renewable fuels by 2022 under its updated renewable fuels standard (RFS2) policy. In this paper, we study the longer-term global implications of large-scale renewable fuels production in the U.S. We utilize the GTAP v7.1 data base and introduce a detailed breakdown of agricultural crops, first and second generation biofuels and by-products. We update this fully disaggregated data base to reflect the 2010 global economy, based on secondary data for the sectors and regions included. We adapt the Applied Dynamic Analysis of Global Economy (ADAGE) model developed by Ross (2009) into a recursive dynamic framework and introduce agriculture, biofuels, and land use linkages. We construct a dynamic baseline from 2010 through 2050 in five-year time steps. The dynamics in the model comes from growth in GDP, population, capital accumulation, labor productivity, growth in natural resource stocks, and technological changes in the energy intensive and agricultural sectors. We implement a representative RFS2 policy scenario in the U.S for 2025, using two alternative approaches: (i) RFS permits approach – which assumes biofuels and petroleum fuels are perfect substitutes after adjusting for energy content, and (ii) Target share of biofuels in transportation fuels approach – which treats biofuels and petroleum fuels as imperfect substitutes. Both approaches offer insights regarding potential policy impacts, particularly on the international market and indirect land use change. Because the share approach keeps the biofuels share fixed in the regions outside the U.S., it does not result in dramatic changes in the rest of the world. In the permits approach, however, the regions without a specific policy requiring a given level of biofuels tend to reduce biofuels consumption. This is a result of the reduction in relative price of petroleum products as U.S. policy increases demand for biofuels and reduces global demand for petroleum, making renewable fuels less cost-competitive in the rest of the world.ADAGE, Biofuels, Computable General Equilibrium, Recursive Dynamic, Resource /Energy Economics and Policy,

    Reconstructing glacial outburst floods (jökulhlaups) from geomorphology: challenges, solutions, and an enhanced interpretive framework

    Get PDF
    Glacial outburst floods (jökulhlaups) have been significant drivers of landscape change across Earth throughout the Quaternary and are a contemporary hazard in Arctic and alpine regions worldwide. Geomorphologic evidence is a foundation for reconstructing past and contemporary flood events and using additional analytical methods such as geochronology and paleohydraulics. Yet, accurate interpretation of jökulhlaup landforms and depositional sequences poses a persistent challenge due to complex controls on flood hydraulics and landscape evolution. Researchers have developed numerous strategies to reduce or resolve these challenges, but a comprehensive, globally applicable model to interpret flood evidence outside of sedimentary environments is lacking. This article synthesizes existing case studies to describe jökulhlaup geomorphologic interpretive challenges, discuss strategies to resolve them, and present a conceptual model of flood landform assemblages to illustrate hydraulic and environmental controls on resultant geomorphologic impacts. This enhanced interpretive framework aids researchers in identifying, interpreting, and testing geomorphologic evidence to reconstruct past jökulhlaups and predict future flood impacts as robustly as possible at a global, landscape-wide scale. Understanding jökulhlaup geomorphology yields insight into glacial lake and ice margin dynamics, the role of extreme events in landscape evolution, and interactions between climate, ice sheets, and hydrology. Moreover, it is increasingly important as glacial outburst floods may become more frequent due to climate-driven ice retreat, advancing predictive capacities to mitigate societal risk downstream.</div

    Team 6: Joint Capability Metamodel-Test-Metamodel Integration with Data Farming

    Get PDF
    from Scythe : Proceedings and Bulletin of the International Data Farming Community, Issue 2 Workshop 14US adversaries are continuously seeking new ways to threaten US interests at home and abroad. In order to counter these threats, now more than ever, commanders must seek to leverage existing and emerging joint capabilities effectively in a variety of unique contexts. Achieving mission effectiveness in today's joint operational environment demands robust synergy among a wide array of mission-critical Service systems and capabilities

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure

    Conductance through Quantum Dots Studied by Finite Temperature DMRG

    Full text link
    With the Finite temperature Density Matrix Renormalization Group method (FT-DMRG), we depeloped a method to calculate thermo-dynamical quantities and the conductance of a quantum dot system. Conductance is written by the local density of states on the dot. The density of states is calculated with the numerical analytic continuation from the thermal Green's function which is obtained directly from the FT-DMRG. Typical Kondo behaviors in the quantum dot system are observed conveniently by comparing the conductance with the magnetic and charge susceptibilities: Coulomb oscillation peaks and the unitarity limit. We discuss advantage of this method compared with others.Comment: 14 pages, 13 fiure

    A Retrospective Database Analysis of Neonatal Morbidities to Evaluate a Composite Endpoint for Use in Preterm Labor Clinical Trials

    Get PDF
    Objective To propose and assess a composite endpoint (CE) of neonatal benefit based on neonatal mortality and morbidities by gestational age (GA) for use in preterm labor clinical trials. Study Design A descriptive, retrospective analysis of the Medical University of South Carolina Perinatal Information System database was conducted. Neonatal morbidities were assessed for inclusion in the CE based on clinical significance/risk of childhood neurodevelopmental impairment, frequency, and association with GA in a mother– neonate linked cohort, comprising women with uncomplicated singleton pregnancies delivered at !24 weeks’ GA. Results Among 17,912 mother–neonate pairs, neonates were at a risk of numerous severe but infrequent morbidities. Clinically important, predominantly rare events were combined into a CE comprising neonatal mortality and morbidities, which decreased in frequency with increasing GA. The highest CE frequency occurred at \u3c31 weeks. High frequency of respiratory distress syndrome, bronchopulmonary dysplasia, and sepsis drove the CE. Median length of hospital stay was longer at all GAs in those with the CE compared with those without. Conclusions Descriptive epidemiological assessment and clinical input were used to develop a CE to measure neonatal benefit, comprising clinically meaningful outcomes. These empirical data and CE allowed trials investigating tocolytics to be sized appropriately

    Landuse and soil degradation in the southern Maya lowlands, from Pre-Classic to Post-Classic times : The case of La Joyanca (Petén, Guatemala)

    Get PDF
    International audienceThis work focuses on the impact of Maya agriculture on soil degradation. In site and out site studies in the area of the city of La Joyanca (NW Petén) show that "Maya clays" do not constitute a homogeneous unit, but represent a complex sedimentary record. A high resolution analysis leads us to document changes in rates and practices evolving in time in relation with major socio-political and economic changes. It is possible to highlight extensive agricultural practices between Early Pre-classical to Late Pre-classical times. Intensification occurs in relation with reduction of the fallow duration during Pre-classic to Classic periods. The consequences of these changes on soil erosion are discussed. However, it does not seem that the agronomic potential of the soils was significantly degraded before the end of the Classic period
    corecore