30 research outputs found

    Defining genome-wide expression and phenotypic contextual cues in macrophages generated by GM-CSF, M-CSF and heat-killed mycobacteria

    Get PDF
    Heat-killed (HK) Mycobacterium obuense (NCTC13365) is currently being evaluated in the clinic as an immunotherapeutic agent for cancer treatment. Yet, the molecular underpinnings underlying immunomodulatory properties of HK M. obuense are still largely undefined. To fill this void, we sought to perform immunophenotyping, chemokine/cytokine release analysis and genome-wide characterization of monocyte-derived macrophages (MDM) in which monocytes were originally isolated from healthy donors and differentiated by HK M. obuense (Mob-MDM) relative to macrophage colony-stimulating factor (M-MDM) and granulocyte/macrophage colony-stimulating factor (GM-MDM). Immunophenotyping and cytokine release analysis revealed downregulated surface expression of CD36, decreased spontaneous release of CCL2 and increased spontaneous secretion of CCL5, CXCL8/IL-8, IL-6, and TNF-α in Mob-MDM relative to M-MDM and GM-MDM. Analysis of cytostatic activity showed that Mob-MDM exhibited similar growth inhibitory effects on immortalized and malignant epithelial cells compared with GM-MDM but at an elevated rate relative to M-MDM. To understand global cues in Mob-MDM, we performed comparative RNA-sequencing (RNA-Seq) analysis of Mob-MDM relative to GM-MDM and M-MDM (n = 4 donors). Clustering analysis underscored expression profiles (n = 256) that were significantly modulated in Mob-MDM versus both M-MDM and GM-MDM including, among others, chemokines/cytokines and their receptors, enzymes and transcriptions factors. Topological functional analysis of these profiles identified pathways and gene sets linked to Mob-MDM phenotype including nitric oxide production, acute phase response signaling and microbe recognition pathways as well as signaling cues mediated by the proinflammatory cytokine, interferon-gamma, and the intracellular pattern recognition receptor, nucleotide-binding oligomerization domain-containing protein 2. Taken together, our study highlights molecular immune phenotypes and global signaling cues in Mob-MDM that may underlie immunomodulatory properties of HK M. obuense. Such properties could be of valuable use in immunotherapy approaches such as adoptive cell therapy against cancer

    Immunomodulatory effects of heat killed 'Mycobacterium obuense' on human blood dendritic cells

    Get PDF
    Heat-killed (HK) Mycobacterium obuense is a novel immunomodulator, currently undergoing clinical evaluation as an immunotherapeutic agent in the treatment of cancer. Here, we examined the effect of in vitro exposure to HK M. obuense on the expression of different categories of surface receptors on human blood myeloid (m) and plasmacytoid (p) DCs. Moreover, we have characterized the cytokine and chemokine secretion patterns of purified total blood DCs stimulated with HK M. obuense. HK M. obuense significantly up-regulated the expression of CD11c, CD80, CD83, CD86, CD274 and MHC class II in whole-blood mDCs and CD80, CD123 and MHC class II in whole-blood pDCs. Down-regulation of CD195 expression in both DC subpopulations was also noted. Further analysis showed that HK M. obuense up-regulated the expression of CD80, CD83 and MHC class II on purified blood DC subpopulations. TLR2 and TLR1 were also identified to be engaged in mediating the HK M. obuense-induced up-regulation of surface receptor expression on whole blood mDCs. In addition, our data demonstrated that HK M. obuense augmented the secretion of CCL4, CCL5, CCL22, CXCL8, IL-6, IL-12p40 and TNF-α by purified total blood DCs. Taken together, our data suggest that HK M. obuense exerts potent differential immunomodulatory effects on human DC subpopulations. </jats:p

    Minimizing Base Station Power Consumption

    Get PDF
    We propose a new radio resource management algorithm which aims at minimizing the base station supply power consumption for multi-user MIMO-OFDM. Given a base station power model that establishes a relation between the RF transmit power and the supply power consumption, the algorithm optimizes the trade-off between three basic power-saving mechanisms: antenna adaptation, power control and discontinuous transmission. The algorithm comprises two steps: a) the first step estimates sleep mode duration, resource shares and antenna configuration based on average channel conditions and b) the second step exploits instantaneous channel knowledge at the transmitter for frequency selective time-variant channels. The proposed algorithm finds the number of transmit antennas, the RF transmission power per resource unit and spatial channel, the number of discontinuous transmission time slots, and the multi-user resource allocation, such that supply power consumption is minimized. Simulation results indicate that the proposed algorithm is capable of reducing the supply power consumption by between 25% and 40%, dependend on the system load.Comment: 27 page

    Interference Coordination for 5G New Radio

    Get PDF

    Cytokine/chemokine release patterns and transcriptomic profiles of LPS/IFNγ-activated human macrophages differentiated with heat-killed 'Mycobacterium obuense', M-CSF, or GM-CSF

    Get PDF
    Macrophages (Mφs) are instrumental regulators of the immune response whereby they acquire diverse functional phenotypes following their exposure to microenvironmental cues that govern their differentiation from monocytes and their activation. The complexity and diversity of the mycobacterial cell wall have empowered mycobacteria with potent immunomodulatory capacities. A heat-killed (HK) whole-cell preparation of Mycobacterium obuense (M. obuense) has shown promise as an adjunctive immunotherapeutic agent for the treatment of cancer. Moreover, HK M. obuense has been shown to trigger the differentiation of human monocytes into a monocyte-derived macrophage (MDM) type named Mob-MDM. However, the transcriptomic profile and functional properties of Mob-MDMs remain undefined during an activation state. Here, we characterized cytokine/chemokine release patterns and transcriptomic profiles of lipopolysaccharide (LPS)/interferon γ (IFNγ)-activated human MDMs that were differentiated with HK M. obuense (Mob-MDM(LPS/IFNγ)), macrophage colony-stimulating factor M-MDM(LPS/IFNγ)), or granulocyte/macrophage colony-stimulating factor (GM-MDM(LPS/IFNγ)). Mob-MDM(LPS/IFNγ) demonstrated a unique cytokine/chemokine release pattern (interleukin (IL)-10low, IL-12/23p40low, IL-23p19/p40low, chemokine (C-x-C) motif ligand (CXCL)9low) that was distinct from those of M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ). Furthermore, M-MDM(LPS/IFNγ) maintained IL-10 production at significantly higher levels compared to GM-MDM(LPS/IFNγ) and Mob-MDM(LPS/IFNγ) despite being activated with M1-Mφ-activating stimuli. Comparative RNA sequencing analysis pointed to a distinct transcriptome profile for Mob-MDM(LPS/IFNγ) relative to both M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ) that comprised 417 transcripts. Functional gene-set enrichment analysis revealed significant overrepresentation of signaling pathways and biological processes that were uniquely related to Mob-MDM(LPS/IFNγ). Our findings lay a foundation for the potential integration of HK M. obuense in specific cell-based immunotherapeutic modalities such as adoptive transfer of Mφs (Mob-MDM(LPS/IFNγ)) for cancer treatment

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Analysis of the immune effects of two heat-killed whole cell mycobacterial preparations

    No full text
    Heat killed (HK) whole-cell preparations of the rapidly-growing mycobacteria, Mycobacterium vaccae and M. obuense, have been shown to possess immunomodulatory properties and hence a promising therapeutic potential. However, the outcome of interaction between both HK mycobacterial preparations and primary human innate immune cells remains largely undefined. The aim of this study was to investigate the regulation of surface expression of different categories of receptors on human neutrophils, monocytes, myeloid (m), and plasmacytiod (p) dendritic cells (DCs) following their in vitro stimulation with HK M. vaccae or M. obuense. Moreover, the pattern of cytokine and chemokine production in whole blood cultures and by purified total blood DCs in response to mycobacterial stimulation was examined. The current study also examined the phenotypic, functional, and transcriptomic profiles of non-activated and LPS/IFNy- activated human monocyte derived macrophages (MDM) differentiated with HK M. obuense (Mob-MDM), M-CSF (M-MDM), and GM-CSF (GM-MDM). Both HK mycobacterial preparations were found, first, to regulate the surface expression of adhesion, antigen-presenting, costimulatory, pattern recognition, cytokine/chemokine, complement, and Fe receptors on whole blood monocytes and neutrophils and, second, to induce mainly the production of pro-inflammatory cytokines/chemokines (CCL3, CCL5, CXCL8, IL-6, IL-12/23p40 and TNF-a) in whole blood cultures. Additionally, HK M. obuense was shown to primarily upregulate the surface expression of DCs and to augment the release of pro-inflammatory cytokines/chemokines (IL-6, IL12/23p40, TNF-a, CCL4, CCL5 and CXL8) by purified total blood DCs. Toll-like receptor (TLR-1) and TLR-2 were also identified to be engaged in mediating the HK M. obuense-induced up-regulation of CD11c and MHC class II surface expression on whole blood monocytes and mDCs. Of note, HK M. obeunse demonstrated an ability to trigger human monocyte-to-macrophange differentiation. Integrative phenotypic and genome-wide transcriptomic analysis revealed cytokine/chemokine secretion patterns, gene expression profiles and gene-gene networks in non-activated and LPS/IFNy-activated Mob-MDM that were quite distinct from those observed in non-activated and LPS/IFNy-activated M-MDM and GM-MDM. Overall, data from this study suggested that HK M. obuense exhibit potent immunomodulatory effects on primary human innate immune cells. Moreover, these results, together with previous clinical studies, point to a potential implication of HK M.obuense in the immunotherapy of cancer

    Large System Analysis of Interference Alignment Achievable Rates for the MIMO Interference Channel

    No full text
    corecore