85 research outputs found

    Selective remodeling of cardiolipin fatty acids in the aged rat heart

    Get PDF
    BACKGROUND: The heart is rich in cardiolipin, a phospholipid acylated in four sites, predominately with linoleic acid. Whether or not aging alters the composition of cardiolipin acyl chains is controversial. We therefore measured the fatty acid concentration of cardiolipin in hearts of 4, 12 and 24 month old rats that consumed one diet, adequate in fatty acids for the duration of their life. RESULTS: The concentration (nmol/g) of linoleic acid was decreased in 24 month old rats (3965 ± 617, mean ± SD) vs 4 month old rats (5525 ± 656), while the concentrations of arachidonic and docosahexaenoic acid were increased in 24 month old rats (79 ± 9 vs 178 ± 27 and 104 ± 16 vs 307 ± 68 for arachidonic and docosahexaenoic acids, 4 months vs 24 months, respectively). Similar changes were not observed in ethanolamine glycerophospholipids or plasma unesterified fatty acids, suggesting specificity of these effects to cardiolipin. CONCLUSION: These results demonstrate that cardiolipin remodeling occurs with aging, specifically an increase in highly unsaturated fatty acids

    Acute Hypercapnia/Ischemia Alters the Esterification of Arachidonic Acid and Docosahexaenoic Acid Epoxide Metabolites in Rat Brain Neutral Lipids.

    Get PDF
    In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2 -induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2 -induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2 -asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic-lipophilic-balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2 -asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations

    Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Get PDF
    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke

    Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion

    Get PDF
    This project was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) [482597] and from the Canadian Institutes of Health Research (CIHR) [497215] to Dr. R.P. Bazinet and by a NSERC studentship to Dr. C.T. Chen.Peer reviewedPostprin

    Dietary Omega-3 Polyunsaturated Fatty Acid Deprivation Does Not Alter Seizure Thresholds but May Prevent the Anti-seizure Effects of Injected Docosahexaenoic Acid in Rats

    Get PDF
    Background: Brain concentrations of omega-3 docosahexaenoic acid (DHA, 22:6n-3) have been reported to positively correlate with seizure thresholds in rodent seizure models. It is not known whether brain DHA depletion, achieved by chronic dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency, lowers seizure thresholds in rats.Objective: The present study tested the hypothesis that lowering brain DHA concentration with chronic dietary n-3 PUFA deprivation in rats will reduce seizure thresholds, and that compared to injected oleic acid (OA), injected DHA will raise seizure thresholds in rats maintained on n-3 PUFA adequate and deficient diets.Methods: Rats (60 days old) were surgically implanted with electrodes in the amygdala, and subsequently randomized to the AIN-93G diet containing adequate levels of n-3 PUFA derived from soybean oil or an n-3 PUFA-deficient diet derived from coconut and safflower oil. The rats were maintained on the diets for 37 weeks. Afterdischarge seizure thresholds (ADTs) were measured every 4–6 weeks by electrically stimulating the amygdala. Between weeks 35 and 37, ADTs were assessed within 1 h of subcutaneous OA or DHA injection (600 mg/kg). Seizure thresholds were also measured in a parallel group of non-implanted rats subjected to the maximal pentylenetetrazol (PTZ, 110 mg/kg) seizure test. PUFA composition was measured in the pyriform-amygdala complex of another group of non-implanted rats sacrificed at 16 and 32 weeks.Results: Dietary n-3 PUFA deprivation did not significantly alter amygdaloid seizure thresholds or latency to PTZ-induced seizures. Acute injection of OA did not alter amygdaloid ADTs of rats on the n-3 PUFA adequate or deficient diets, whereas acute injection of DHA significantly increased amygdaloid ADTs in rats on the n-3 PUFA adequate control diet as compared to rats on the n-3 PUFA deficient diet (P < 0.05). Pyriform-amygdala DHA percent composition did not significantly differ between the groups, while n-6 docosapentaenoic acid, a marker of n-3 PUFA deficiency, was significantly increased by 2.9-fold at 32 weeks.Conclusion: Chronic dietary n-3 PUFA deficiency does not alter seizure thresholds in rats, but may prevent the anti-seizure effects of DHA

    Dietary Long‐Chain n‐3 Polyunsaturated Fatty Acid Supplementation Alters Electrophysiological Properties in the Nucleus Accumbens and Emotional Behavior in Naïve and Chronically Stressed Mice

    Get PDF
    Long‐chain (LC) n‐3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC n‐3 PUFA protects from the development of mood disorders is still a matter of de-bate. In the present study, we studied the effect of a two‐month exposure to isocaloric diets containing n‐3 PUFAs in the form of relatively short‐chain (SC) (6% of rapeseed oil, enriched in α‐linolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC n‐3 (supplemented) PUFA diet. Our results indicate that LC n‐3 supplementation significantly increased some n‐3 PUFAs, while decreasing some n‐6 PUFAs. Then, in another cohort, control and n‐3 PUFA‐supplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with long‐term depression plasticity in accumbal medium spiny neurons. Overall, mice fed with n‐3 PUFA supple-mentation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and suscep-tible mice in the CSDS groups, n‐3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC n‐3 PUFA, as compared to a diet rich in SC n‐3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC n‐3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC n‐3 PUFA on emotional behavior and synaptic plasticity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Two weeks of docosahexaenoic acid (DHA) supplementation increases synthesis-secretion kinetics of n-3 polyunsaturated fatty acids compared to 8 weeks of DHA supplementation

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jnutbio.2018.07.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.Natural Sciences and Engineering Research Council of Canada || 48259

    Resolvin E1 Derived from Eicosapentaenoic Acid Prevents Hyperinsulinemia and Hyperglycemia in a Host Genetic Manner

    Get PDF
    The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA\u27s preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1\u27s effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1\u27s activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles
    • 

    corecore