16 research outputs found

    A Domain-Region Based Evaluation of ML Performance Robustness to Covariate Shift

    Full text link
    Most machine learning methods assume that the input data distribution is the same in the training and testing phases. However, in practice, this stationarity is usually not met and the distribution of inputs differs, leading to unexpected performance of the learned model in deployment. The issue in which the training and test data inputs follow different probability distributions while the input-output relationship remains unchanged is referred to as covariate shift. In this paper, the performance of conventional machine learning models was experimentally evaluated in the presence of covariate shift. Furthermore, a region-based evaluation was performed by decomposing the domain of probability density function of the input data to assess the classifier's performance per domain region. Distributional changes were simulated in a two-dimensional classification problem. Subsequently, a higher four-dimensional experiments were conducted. Based on the experimental analysis, the Random Forests algorithm is the most robust classifier in the two-dimensional case, showing the lowest degradation rate for accuracy and F1-score metrics, with a range between 0.1% and 2.08%. Moreover, the results reveal that in higher-dimensional experiments, the performance of the models is predominantly influenced by the complexity of the classification function, leading to degradation rates exceeding 25% in most cases. It is also concluded that the models exhibit high bias towards the region with high density in the input space domain of the training samples

    DQSOps: Data Quality Scoring Operations Framework for Data-Driven Applications

    Full text link
    Data quality assessment has become a prominent component in the successful execution of complex data-driven artificial intelligence (AI) software systems. In practice, real-world applications generate huge volumes of data at speeds. These data streams require analysis and preprocessing before being permanently stored or used in a learning task. Therefore, significant attention has been paid to the systematic management and construction of high-quality datasets. Nevertheless, managing voluminous and high-velocity data streams is usually performed manually (i.e. offline), making it an impractical strategy in production environments. To address this challenge, DataOps has emerged to achieve life-cycle automation of data processes using DevOps principles. However, determining the data quality based on a fitness scale constitutes a complex task within the framework of DataOps. This paper presents a novel Data Quality Scoring Operations (DQSOps) framework that yields a quality score for production data in DataOps workflows. The framework incorporates two scoring approaches, an ML prediction-based approach that predicts the data quality score and a standard-based approach that periodically produces the ground-truth scores based on assessing several data quality dimensions. We deploy the DQSOps framework in a real-world industrial use case. The results show that DQSOps achieves significant computational speedup rates compared to the conventional approach of data quality scoring while maintaining high prediction performance.Comment: 10 Pages The International Conference on Evaluation and Assessment in Software Engineering (EASE) conferenc

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Towards Robust and Adaptive Machine Learning : A Fresh Perspective on Evaluation and Adaptation Methodologies in Non-Stationary Environments

    No full text
    Machine learning (ML) has become ubiquitous in various disciplines and applications, serving as a powerful tool for developing predictive models to analyze diverse variables of interest. With the advent of the digital era, the proliferation of data has presented numerous opportunities for growth and expansion across various domains. However, along with these opportunities, there is a unique set of challenges that arises due to the dynamic and ever-changing nature of data. These challenges include concept drift, which refers to shifting data distributions over time, and other data-related issues that can be framed as learning problems. Traditional static models are inadequate in handling these issues, underscoring the need for novel approaches to enhance the performance robustness and reliability of ML models to effectively navigate the inherent non-stationarity in the online world. The field of concept drift is characterized by several intricate aspects that challenge learning algorithms, including the analysis of model performance, which requires evaluating and understanding how the ML model's predictive capability is affected by different problem settings. Additionally, determining the magnitude of drift necessary for change detection is an indispensable task, as it involves identifying substantial shifts in data distributions. Moreover, the integration of adaptive methodologies is essential for updating ML models in response to data dynamics, enabling them to maintain their effectiveness and reliability in evolving environments. In light of the significance and complexity of the topic, this dissertation offers a fresh perspective on the performance robustness and adaptivity of ML models in non-stationary environments. The main contributions of this research include exploring and organizing the literature, analyzing the performance of ML models in the presence of different types of drift, and proposing innovative methodologies for drift detection and adaptation that solve real-world problems. By addressing these challenges, this research paves the way for the development of more robust and adaptive ML solutions capable of thriving in dynamic and evolving data landscapes.Machine learning (ML) is widely used in various disciplines as a powerful tool for developing predictive models to analyze diverse variables. In the digital era, the abundance of data has created growth opportunities, but it also brings challenges due to the dynamic nature of data. One of these challenges is concept drift, the shifting data distributions over time. Consequently, traditional static models are inadequate for handling these challenges in the online world. Concept drift, with its intricate aspects, presents a challenge for learning algorithms. Analyzing model performance and detecting substantial shifts in data distributions are crucial for integrating adaptive methodologies to update ML models in response to data dynamics, maintaining effectiveness and reliability in evolving environments. In this dissertation, a fresh perspective is offered on the robustness and adaptivity of ML models in non-stationary environments. This research explores and organizes existing literature, analyzes ML model performance in the presence of drift, and proposes innovative methodologies for detecting and adapting to drift in real-world problems. The aim is to develop more robust and adaptive ML solutions capable of thriving in dynamic and evolving data landscapes

    Towards Robust and Adaptive Machine Learning : A Fresh Perspective on Evaluation and Adaptation Methodologies in Non-Stationary Environments

    No full text
    Machine learning (ML) has become ubiquitous in various disciplines and applications, serving as a powerful tool for developing predictive models to analyze diverse variables of interest. With the advent of the digital era, the proliferation of data has presented numerous opportunities for growth and expansion across various domains. However, along with these opportunities, there is a unique set of challenges that arises due to the dynamic and ever-changing nature of data. These challenges include concept drift, which refers to shifting data distributions over time, and other data-related issues that can be framed as learning problems. Traditional static models are inadequate in handling these issues, underscoring the need for novel approaches to enhance the performance robustness and reliability of ML models to effectively navigate the inherent non-stationarity in the online world. The field of concept drift is characterized by several intricate aspects that challenge learning algorithms, including the analysis of model performance, which requires evaluating and understanding how the ML model's predictive capability is affected by different problem settings. Additionally, determining the magnitude of drift necessary for change detection is an indispensable task, as it involves identifying substantial shifts in data distributions. Moreover, the integration of adaptive methodologies is essential for updating ML models in response to data dynamics, enabling them to maintain their effectiveness and reliability in evolving environments. In light of the significance and complexity of the topic, this dissertation offers a fresh perspective on the performance robustness and adaptivity of ML models in non-stationary environments. The main contributions of this research include exploring and organizing the literature, analyzing the performance of ML models in the presence of different types of drift, and proposing innovative methodologies for drift detection and adaptation that solve real-world problems. By addressing these challenges, this research paves the way for the development of more robust and adaptive ML solutions capable of thriving in dynamic and evolving data landscapes.Machine learning (ML) is widely used in various disciplines as a powerful tool for developing predictive models to analyze diverse variables. In the digital era, the abundance of data has created growth opportunities, but it also brings challenges due to the dynamic nature of data. One of these challenges is concept drift, the shifting data distributions over time. Consequently, traditional static models are inadequate for handling these challenges in the online world. Concept drift, with its intricate aspects, presents a challenge for learning algorithms. Analyzing model performance and detecting substantial shifts in data distributions are crucial for integrating adaptive methodologies to update ML models in response to data dynamics, maintaining effectiveness and reliability in evolving environments. In this dissertation, a fresh perspective is offered on the robustness and adaptivity of ML models in non-stationary environments. This research explores and organizes existing literature, analyzes ML model performance in the presence of drift, and proposes innovative methodologies for detecting and adapting to drift in real-world problems. The aim is to develop more robust and adaptive ML solutions capable of thriving in dynamic and evolving data landscapes

    A domain-region based evaluation of ML performance robustness to covariate shift

    No full text
    Most machine learning methods assume that the input data distribution is the same in the training and testing phases.However, in practice, this stationarity is usually not met and the distribution of inputs differs, leading to unexpectedperformance of the learned model in deployment. The issue in which the training and test data inputs follow differentprobability distributions while the input–output relationship remains unchanged is referred to as covariate shift. In thispaper, the performance of conventional machine learning models was experimentally evaluated in the presence of covariateshift. Furthermore, a region-based evaluation was performed by decomposing the domain of probability density function ofthe input data to assess the classifier’s performance per domain region. Distributional changes were simulated in a twodimensional classification problem. Subsequently, a higher four-dimensional experiments were conducted. Based on theexperimental analysis, the Random Forests algorithm is the most robust classifier in the two-dimensional case, showing thelowest degradation rate for accuracy and F1-score metrics, with a range between 0.1% and 2.08%. Moreover, the resultsreveal that in higher-dimensional experiments, the performance of the models is predominantly influenced by the complexity of the classification function, leading to degradation rates exceeding 25% in most cases. It is also concluded that themodels exhibit high bias toward the region with high density in the input space domain of the training samples

    From concept drift to model degradation: An overview on performance-aware drift detectors

    No full text
    The dynamicity of real-world systems poses a significant challenge to deployed predictive machine learning (ML) models. Changes in the system on which the ML model has been trained may lead to performance degradation during the system’s life cycle. Recent advances that study non-stationary environments have mainly focused on identifying and addressing such changes caused by a phenomenon called concept drift. Different terms have been used in the literature to refer to the same type of concept drift and the same term for various types. This lack of unified terminology is set out to create confusion on distinguishing between different concept drift variants. In this paper, we start by grouping concept drift types by their mathematical definitions and survey the different terms used in the literature to build a consolidated taxonomy of the field. We also review and classify performance-based concept drift detection methods proposed in the last decade. These methods utilize the predictive model’s performance degradation to signal substantial changes in the systems. The classification is outlined in a hierarchical diagram to provide an orderly navigation between the methods. We present a comprehensive analysis of the main attributes and strategies for tracking and evaluating the model’s performance in the predictive system. The paper concludes by discussing open research challenges and possible research directions.AID

    A systematic mapping study of source code representation for deep learning in software engineering

    Get PDF
    The usage of deep learning (DL) approaches for software engineering has attracted much attention, particularly in source code modelling and analysis. However, in order to use DL, source code needs to be formatted to fit the expected input form of DL models. This problem is known as source code representation. Source code can be represented via different approaches, most importantly, the tree-based, token-based, and graph-based approaches. We use a systematic mapping study to investigate i detail the representation approaches adopted in 103 studies that use DL in the context of software engineering. Thus, studies are collected from 2014 to 2021 from 14 different journals and 27 conferences. We show that each way of representing source code can provide a different, yet orthogonal view of the same source code. Thus, different software engineering tasks might require different (combinations of) code representation approaches, depending on the nature and complexity of the task. Particularly, we show that it is crucial to define whether the DL approach requires lexical, syntactical, or semantic code information. Our analysis shows that a wide range of different representations and combinations of representations (hybrid representations) are used to solve a wide range of common software engineering problems. However, we also observe that current research does not generally attempt to transfer existing representations or models to other studies even though there are other contexts in which these representations and models may also be useful. We believe that there is potential for more reuse and the application of transfer learning when applying DL to software engineering tasks

    A Drift Handling Approach for Self-Adaptive ML Software in Scalable Industrial Processes

    No full text
    Most industrial processes in real-world manufacturing applications are characterized by the scalability property, which requires an automated strategy to self-adapt machine learning (ML) software systems to the new conditions. In this paper, we investigate an Electroslag Remelting (ESR) use case process from the Uddeholms AB steel company. The use case involves predicting the minimum pressure value for a vacuum pumping event. Taking into account the long time required to collect new records and efficiently integrate the new machines with the built ML software system. Additionally, to accommodate the changes and satisfy the non-functional requirement of the software system, namely adaptability, we propose an automated and adaptive approach based on a drift handling technique called importance weighting. The aim is to address the problem of adding a new furnace to production and enable the adaptability attribute of the ML software. The overall results demonstrate the improvements in ML software performance achieved by implementing the proposed approach over the classical non-adaptive approach.

    DA-LSTM: A dynamic drift-adaptive learning framework for interval load forecasting with LSTM networks

    No full text
    Load forecasting is a crucial topic in energy management systems (EMS) due to its vital role in optimizing energy scheduling and enabling more flexible and intelligent power grid systems. As a result, these systems allow power utility companies to respond promptly to demands in the electricity market. Deep learning (DL) models have been commonly employed in load forecasting problems supported by adaptation mechanisms to cope with the changing pattern of consumption by customers, known as concept drift. A drift magnitude threshold should be defined to design change detection methods to identify drifts. While the drift magnitude in load forecasting problems can vary significantly over time, existing literature often assumes a fixed drift magnitude threshold, which should be dynamically adjusted rather than fixed during system evolution. To address this gap, in this paper, we propose a dynamic drift-adaptive Long Short-Term Memory (DA-LSTM) framework that can improve the performance of load forecasting models without requiring a drift threshold setting. We integrate several strategies into the framework based on active and passive adaptation approaches. To evaluate DA-LSTM in real-life settings, we thoroughly analyze the proposed framework and deploy it in a real-world problem through a cloud-based environment. Efficiency is evaluated in terms of the prediction performance of each approach and computational cost. The experiments show performance improvements on multiple evaluation metrics achieved by our framework compared to baseline methods from the literature. Finally, we present a trade-off analysis between prediction performance and computational costs
    corecore