1,203 research outputs found

    HATS-5b: A Transiting hot-Saturn from the HATSouth Survey

    Get PDF
    We report the discovery of HATS-5b, a transiting hot-Saturn orbiting a G type star, by the HAT-South survey. HATS-5b has a mass of Mp=0.24 Mj, radius of Rp=0.91 Rj, and transits its host star with a period of P=4.7634d. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V band magnitude of 12.6, mass of 0.94 Msun, and radius of 0.87 Rsun. The relatively high scale height of HATS-5b, and the bright, photometrically quiet host star, make this planet a favourable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas-giants, and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas-giant population.Comment: 10 pages, submitted to A

    HATS-6b: A Warm Saturn Transiting an Early M Dwarf Star, and a Set of Empirical Relations for Characterizing K and M Dwarf Planet Hosts

    Full text link
    We report the discovery by the HATSouth survey of HATS-6b, an extrasolar planet transiting a V=15.2 mag, i=13.7 mag M1V star with a mass of 0.57 Msun and a radius of 0.57 Rsun. HATS-6b has a period of P = 3.3253 d, mass of Mp=0.32 Mjup, radius of Rp=1.00 Rjup, and zero-albedo equilibrium temperature of Teq=712.8+-5.1 K. HATS-6 is one of the lowest mass stars known to host a close-in gas giant planet, and its transits are among the deepest of any known transiting planet system. We discuss the follow-up opportunities afforded by this system, noting that despite the faintness of the host star, it is expected to have the highest K-band S/N transmission spectrum among known gas giant planets with Teq < 750 K. In order to characterize the star we present a new set of empirical relations between the density, radius, mass, bolometric magnitude, and V, J, H and K-band bolometric corrections for main sequence stars with M < 0.80 Msun, or spectral types later than K5. These relations are calibrated using eclipsing binary components as well as members of resolved binary systems. We account for intrinsic scatter in the relations in a self-consistent manner. We show that from the transit-based stellar density alone it is possible to measure the mass and radius of a ~0.6 Msun star to ~7% and ~2% precision, respectively. Incorporating additional information, such as the V-K color, or an absolute magnitude, allows the precision to be improved by up to a factor of two.Comment: 21 pages, 11 figures, 10 tables. Submitted to AJ. Data available at http://hatsouth.org Code implementing empirical model available at http://www.astro.princeton.edu/~jhartman/kmdwarfparam.htm

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Baryon Content of Massive Galaxy Clusters (0.57 < z < 1.33)

    Get PDF
    We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z=0.9z=0.9 and median mass M500=6×1014MM_{500}=6\times10^{14}M_{\odot}. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At z=0.9z=0.9 the BCG mass MBCGM_{\star}^{\textrm{BCG}} constitutes 0.12±0.010.12\pm0.01% of the halo mass for a 6×1014M6\times10^{14}M_{\odot} cluster, and this fraction falls as M5000.58±0.07M_{500}^{-0.58\pm0.07}. The cluster stellar mass function has a characteristic mass M0=1011.0±0.1MM_{0}=10^{11.0\pm0.1}M_{\odot}, and the number of galaxies per unit mass in clusters is larger than in the field by a factor 1.65±0.21.65\pm0.2. Both results are consistent with measurements on group scales and at lower redshift. We combine our SPT sample with previously published samples at low redshift that we correct to a common initial mass function and for systematic differences in virial masses. We then explore mass and redshift trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of 6×1014M6\times10^{14}M_{\odot} and redshift z=0.9z=0.9, the characteristic values are fstar=1.1±0.11.1\pm0.1%, fICM=9.6±0.59.6\pm0.5%, fc=10.4±1.210.4\pm1.2% and fb=10.7±0.610.7\pm0.6%. These fractions all vary with cluster mass at high significance, indicating that higher mass clusters have lower fstar and fc and higher fICM and fb. When accounting for a 15% systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass in these baryon fractions. (abridged)Comment: Accepted for publication in MNRA

    HATS-15 b and HATS-16 b: Two massive planets transiting old G dwarf stars

    Full text link
    We report the discovery of HATS-15 b and HATS-16 b, two massive transiting extrasolar planets orbiting evolved (10\sim 10 Gyr) main-sequence stars. The planet HATS-15 b, which is hosted by a G9V star (V=14.8V=14.8 mag), is a hot Jupiter with mass of 2.17±0.15MJ2.17\pm0.15\, M_{\mathrm{J}} and radius of 1.105±0.0.040RJ1.105\pm0.0.040\, R_{\mathrm{J}}, and completes its orbit in nearly 1.7 days. HATS-16 b is a very massive hot Jupiter with mass of 3.27±0.19MJ3.27\pm0.19\, M_{\mathrm{J}} and radius of 1.30±0.15RJ1.30\pm0.15\, R_{\mathrm{J}}; it orbits around its G3 V parent star (V=13.8V=13.8 mag) in 2.7\sim2.7 days. HATS-16 is slightly active and shows a periodic photometric modulation, implying a rotational period of 12 days which is unexpectedly short given its isochronal age. This fast rotation might be the result of the tidal interaction between the star and its planet.Comment: 16 pages, 8 figures, submitted to PAS

    HATS-11b and HATS-12b: Two transiting Hot Jupiters orbiting sub-solar metallicity stars selected for the K2 Campaign 7

    Full text link
    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V=14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000 ±\pm 0.060 M_{\odot}, a radius of 1.444 ±\pm 0.057 M_{\odot} and an effective temperature of 6060 ±\pm 150 K, while its companion is a 0.85 ±\pm 0.12 MJ_J, 1.510 ±\pm 0.078 RJ_J planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V=12.8 F-star. HATS-12 has a mass of 1.489 ±\pm 0.071 M_{\odot}, a radius of 2.21 ±\pm 0.21 R_{\odot}, and an effective temperature of 6408 ±\pm 75 K. For HATS-12, our measurements indicate that this is a 2.38 ±\pm 0.11 MJ_J, 1.35 ±\pm 0.17 RJ_J planet in a circular orbit. Both host stars show sub-solar metallicity of -0.390 ±\pm 0.060 dex and -0.100 ±\pm 0.040 dex, respectively and are (slightly) evolved stars. In fact, HATS-11 is amongst the most metal-poor and, HATS-12 is amongst the most evolved stars hosting a hot Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively).Comment: 14 pages, 7 figures, 6 tables, submitted to A

    HATS-7b: A Hot Super Neptune Transiting a Quiet K Dwarf Star

    Full text link
    IW ../submit_V2/abstract.txt ( Row 1 Col 1 6:48 Ctrl-K H for help We report the discovery by the HATSouth network of HATS-7b, a transiting Super-Neptune with a mass of 0.120+/-0.012MJ, a radius of 0.563+/-(0.046,0.034)RJ, and an orbital period of 3.1853days. The host star is a moderately bright (V=13.340+/-0.010mag, K_S=10.976+/-0.026mag) K dwarf star with a mass of 0.849+/-0.027Msun , a radius of 0.815+/-(0.049,-0.035)Rsun, and a metallicity of [Fe/H]=+0.250+/-0.080. The star is photometrically quiet to within the precision of the HATSouth measurements and has low RV jitter. HATS-7b is the second smallest radius planet discovered by a wide-field ground-based transit survey, and one of only a handful of Neptune-size planets with mass and radius determined to 10% precision. Theoretical modeling of HATS-7b yields a hydrogen-helium fraction of 18+/-4% (rock-iron core and H2-He envelope), or 9+/-4% (ice core and H2-He envelope), i.e.it has a composition broadly similar to that of Uranus and Neptune, and very different from that of Saturn, which has 75% of its mass in H2-He. Based on a sample of transiting exoplanets with accurately (<20%) determined parameters, we establish approximate power-law relations for the envelopes of the mass-density distribution of exoplanets. HATS-7b, which, together with the recently discovered HATS-8b, is one of the first two transiting super-Neptunes discovered in the Southern sky, is a prime target for additional follow-up observations with Southern hemisphere facilities to characterize the atmospheres of Super-Neptunes (which we define as objects with mass greater than that of Neptune, and smaller than halfway between that of Neptune and Saturn, i.e. 0.054 MJ<Mp<0.18 MJ).Comment: 11 pages, accepted for publication by Ap
    corecore