2,032 research outputs found

    Directional drilling attitude control with input disturbances and feedback delay

    Get PDF
    This paper presents a general approach for the attitude control of directional drilling tools for the oil and gas industry. It extends the recent work where a kinematic bilinear model of the directional drilling tool was developed and used as the basis for Constant Build Rate (CBR) controller design. The CBR controller in combination with a modified Smith Predictor (SP) is implemented for the attitude control of the directional drilling. The results of a transient simulation of the proposed modified SP-CBR controller are presented and compared with that from the CBR controller of the earlier studies. It is shown that the modified SP-CBR controller significantly reduces the adverse effects of input disturbances and time delay on the feedback measurements with respect to stability and performance

    Bilinear modelling and bilinear PI control of directional drilling

    Get PDF
    This paper presents the design of an inclination- and azimuth-hold controllers and their subsequent stability and performance analysis for directional drilling tools as typically used in the oil industry. Using an input transformation developed in earlier work that partially linearizes and decouples the plant dynamics of the directional drilling tool, a bilinear model of the directional drilling tool is developed and is used as the basis for Bilinear PI controller design. Results for a transient simulation of the proposed BPI controller are presented and compared with that of the PI controller of the earlier work. It is presented that BPI controller gives more consistent responses over a broader operating range compared to the PI controller. In addition, the effect of time delay on the feedback measurements with respect to the stability and performance is investigated in the simulations

    Orthography influences the perception and production of speech.

    Get PDF
    One intriguing question in language research concerns the extent to which orthographic information impacts on spoken word processing. Previous research has faced a number of methodological difficulties and has not reached a definitive conclusion. Our research addresses these difficulties by capitalizing on recent developments in the area of word learning. Participants were trained to criterion on a set of associations between novel pictures and novel spoken words. Spelling-sound consistent or spelling-sound inconsistent spellings were introduced on the 2nd day, and the influence of these spellings on speech processing was assessed on the 3rd day. Results showed significant orthographic effects on speech perception and speech production in a situation in which spelling–sound consistency was manipulated with perfect experimental control. Results are discussed in terms of a highly interactive language system in which there is a rapid and automatic flow of activation in both directions between orthographic and phonological representations

    Mössbauer spectroscopic study of some iron and antimony – containing minerals

    Get PDF
    Iron-57 Mössbauer spectra have been recorded from three minerals containing both iron and antimony. Schafarzikite of composition FeSb2O4 contains Fe2+. The 121Sb Mössbauer spectrum shows only the presence of Sb3+. The 57Fe Mössbauer spectrum corresponds with that recorded from a material of identical composition synthesised by a solid state reaction during the course of this work. Apuanite of formulation Fe20Sb16O48S4 contains both Fe2+ Fe3+ in the ratio 1:3.35 The result is consistent with crystal structure determinations and the formulation of apuanite as Fe42+Fe163+Sb16O48S4. Versiliaite of composition Fe12Sb12O32S2 contains Fe2+and Fe3+ in the ratio 1:2.12 and, also consistent with structural characterisations, can be formulated Fe42+Fe83+Sb123+O32S2

    Evolution from protoplanetary to debris discs: The transition disc around HD 166191

    Full text link
    HD 166191 has been identified by several studies as hosting a rare and extremely bright warm debris disc with an additional outer cool disc component. However, an alternative interpretation is that the star hosts a disc that is currently in transition between a full gas disc and a largely gas-free debris disc. With the help of new optical to mid-IR spectra and Herschel imaging, we argue that the latter interpretation is supported in several ways: i) we show that HD 166191 is co-moving with the ~4 Myr-old Herbig Ae star HD 163296, suggesting that the two have the same age, ii) the disc spectrum of HD 166191 is well matched by a standard radiative transfer model of a gaseous protoplanetary disc with an inner hole, and iii) the HD 166191 mid-IR silicate feature is more consistent with similarly primordial objects. We note some potential issues with the debris disc interpretation that should be considered for such extreme objects, whose lifetime at the current brightness is mush shorter than the stellar age, or in the case of the outer component requires a mass comparable to the solid component of the Solar nebula. These aspects individually and collectively argue that HD 166191 is a 4-5 Myr old star that hosts a gaseous transition disc. Though it does not argue in favour of either scenario, we find strong evidence for 3-5 um disc variability. We place HD 166191 in context with discs at different evolutionary stages, showing that it is a potentially important object for understanding the protoplanetary to debris disc transition.Comment: accepted to MNRAS, fixed typos in abstract and axis labe

    Probing the wave function and dynamics of the quintet multiexciton state with coherent control in a singlet fission material

    Get PDF
    High-spin states play a key role in chemical reactions found in nature. In artificial molecular systems, singlet fission produces a correlated triplet-pair state, a spin-bearing excited state that can be harnessed for more efficient solar-energy conversion and photocatalysis. In particular, triplet-pair states with overall quintet character (total spin S=2) have been discovered, but many of the fundamental properties of these biexciton states remain unexplored. The net spin of these pair states makes spin-sensitive probes attractive for their characterization. Combined with their surprisingly long spin coherence (of order microseconds), this opens up techniques relying on coherent spin control. Here we apply coherent manipulation of triplet-pair states to (i) isolate their spectral signatures from coexisting free triplets and (ii) selectively couple quintet and triplet states to specific nuclear spins. Using this approach, we separate quintet and triplet transitions and extract the relaxation dynamics and hyperfine couplings of the fission-borne spin states. Our results highlight the distinct properties of correlated and free triplet excitons and demonstrate optically induced nuclear spin polarization by singlet fission

    Dynamo action at low magnetic Prandtl numbers: mean flow vs. fully turbulent motion

    Get PDF
    We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the induction equations are jointly solved. The kinematic instability is found to have two branches, for all explored Reynolds numbers. The dynamical dynamo threshold follows these branches: at low Reynolds number it lies within the low branch while at high kinetic Reynolds number it is close to the high branch.Comment: 4 pages, 4 figure

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Numerical simulations of current generation and dynamo excitation in a mechanically-forced, turbulent flow

    Full text link
    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three dimensional numerical computation. A simple impeller model drives a flow which can generate a growing magnetic field, depending upon the magnetic Reynolds number, Rm, and the fluid Reynolds number. When the flow is laminar, the dynamo transition is governed by a simple threshold in Rm, above which a growing magnetic eigenmode is observed. The eigenmode is primarily a dipole field tranverse to axis of symmetry of the flow. In saturation the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For turbulent flow, the dynamo eigenmode is suppressed. The mechanism of suppression is due to a combination of a time varying large-scale field and the presence of fluctuation driven currents which effectively enhance the magnetic diffusivity. For higher Rm a dynamo reappears, however the structure of the magnetic field is often different from the laminar dynamo; it is dominated by a dipolar magnetic field which is aligned with the axis of symmetry of the mean-flow, apparently generated by fluctuation-driven currents. The fluctuation-driven currents have been studied by applying a weak magnetic field to laminar and turbulent flows. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.Comment: 14 pages, 14 figure
    • …
    corecore