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Abstract—This paper presents the design of an inclination-
and azimuth-hold controllers and their subsequent stability and
performance analysis for directional drilling tools as typically
used in the oil industry. Using an input transformation developed
in earlier work that partially linearizes and decouples the plant
dynamics of the directional drilling tool, a bilinear model of the
directional drilling tool is developed and is used as the basis for
Bilinear PI controller design. Results for a transient simulation
of the proposed BPI controller are presented and compared with
that of the PI controller of the earlier work. It is presented that
BPI controller gives more consistent responses over a broader
operating range compared to the PI controller. In addition, the
effect of time delay on the feedback measurements with respect to
the stability and performance is investigated in the simulations.

I. INTRODUCTION

In recent years the oil and gas industry has sought to extend
the life of existing wells and to exploit smaller and hith-
erto difficult-to-commercialize reservoirs by using directional
drilling and rotary steerable drilling tools [1]. Steerable tools
enable the direction of the well propagation to be directed as
required either by passive steering control from the surface
using fixed-bend positive displacement motors [2], [3] or by
steering the wellbore propagation downhole using a rotary
steerable system (RSS) drilling tool. Directional drilling, by
either approach, is essentially attitude control, that is, con-
cerned with controlling azimuth and inclination [4].

Figure 1 shows the main components of a typical RSS
directional drilling system as discussed in this paper. In Figure
1, it can be seen that the combination of the drill string
and BHA (Bottom Hole Assembly) can be viewed as a
long flexible prop-shaft transmitting torque to the bit down-
hole. In the annular clearance between the well bore and the
drill string/BHA mud returns to the surface as a means of
lubrication and cuttings transport (amongst other functions)
after being pumped from the surface through the center of the
drill string/BHA. The drill string/BHA is suspended from the
block set weight on bit actuator at the drill rig on the surface,
which is also where the top drive rotational actuator is situated.

This paper particularly addresses a generic (tool-
independent) attitude control algorithm developed for
use with directional drilling tools. The importance of attitude
control is highlighted by [4] and [2] who propose control
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Fig. 1. Schematic of main RSS directional drilling system components

strategies for the direction of wellbore propagation based
on holding the tool-face angle. Reference [4] discussed the
need for closed-loop ‘shoot and forget systems’ and state
that the major challenge has been azimuth control. Many of
the attitude control strategies presented in the literature are
discussed in the context of specific tool architectures; [2], [4]
and [5] are typical examples. Another interesting example is
[3] which describes a system for controlling attitude using
two-way telemetry communication links with the surface; the
steering correction, evaluated from the telemetry, is computed
and then manually downlinked to the tool.

In the modelling of physical systems, the dynamics are
often approximated as linear models that are obtained by a
first order Taylor series approximation of the non-linear model
at a particular point of operation. It is clear that such linear
models may be inaccurate over a wider range of operation,
hence bilinear models have been proposed to more accurately
describe the nonlinear systems (see, for example, [6], [7]).
Bilinear models can characterize nonlinear properties more
correctly than linear models, and hence broaden the range
of adequate performance. In this paper, a bilinear model
of the directional drilling tool is developed by applying a
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Carleman Bilinearization technique, described in [8], on a
partially linearized and decoupled plant dynamics of the
directional drilling tool developed in the earlier work of [9].
The generalized state space representation of a multiple-input
multiple-output (MIMO) bilinear system is expressed as [10]:

ẋ = Ax+

(
B +

N∑
i=1

xiMi

)
u (1)

y = Cx (2)

where A,B,C and Mi are constant matrices of suitable
dimensions, y ∈ Rq×1 represents the output to be controlled, u
∈ Rm×1 denotes the control vector, and x ∈ Rn×1 represents
the vector of state variables.

Furthermore, and extending the previous work of [9], this
paper describes an approach for designing a Bilinear Pro-
portional plus Integral (BPI) controller that has the con-
trol objective, once engaged, of automatically holding the
inclination and azimuth of the tool at nominally constant
values as the well is propagated. Usually the tool is manually
controlled to the desired location and orientation, the attitude
(azimuth and inclination) is measured, and then these values
are subsequently used as the demand attitude for the control
algorithm. Unstructured and structured uncertainty analysis
of the robust stability and performance of pole placement,
H∞ and Linear Quadratic Gaussian (LQG) controllers were
performed [9], [11], [12]. Here, the BPI controller, which is
applied for the attitude control of the directional drilling tool,
and illustrated in this paper, is cogitated to present improved
performance over a broader operating limit.

This paper is structured so that the design method for the
BPI control design is presented, starting with a statement
of the plant model; plant bilinearization; control design; and
finally, incorporating it into a transient simulation using the
plant model in nonlinear form together with the necessary
control architecture. The control design and analysis was
performed using MATLAB and its associated Control System
toolbox commands and the subsequent transient simulations
were performed in Simulink.

II. SUMMARY OF EARLIER WORK

A. Tool Kinematics

The plant model is derived from kinematic considerations
as detailed in [9]. The resulting governing equations can be
stated as:

θ̇inc = Vrop (Udls cosUtf − Vdr) (3)

θ̇azi =
Vrop

sin θinc
(Udls sinUtf − Vtr) (4)

where θinc is the inclination angle, θazi is the azimuth an-
gle, Utf is the tool-face angle control input, Udls is the
curvature (Kdls × duty cycle), Kdls is the open loop curva-
ture capability of the tool, Vdr is the drop rate disturbance
(Vdr = α sin θinc), Vtr is the turn rate bias disturbance and
Vrop is the rate of penetration and is an uncontrolled parameter.

Note, the subscript ‘dls’ has been used to reflect that in the
oil industry curvature is often referred to as ‘dogleg severity’.
As detailed in [9], engineering constraints include the control
inputs Udls and Utf being discretized into duty cycles known
as ‘drilling cycles’ and that the tool-face input Utf is subject
to first order lag dynamics. Additionally, the on-tool feedback
measurements of θinc and θazi are subject to pure delays
dependent on Vrop as a consequence of the relevant sensors
being spatially offset from the drill bit (the inertial datum).
These controller and sensor dynamics are ignored for the
controller design.

B. Partially Linearized and Decoupled Plant

The MIMO open loop plant can be partially linearized and
decoupled using the following transformation:

Utf = ATAN2 (Uazi, Uinc) (5)

Udls = Kdls

√
(Uazi)

2
+ (Uinc)

2 (6)

where Uazi and Uinc are virtual control of azimuth and
inclination, respectively. Substituting (5) and (6) into (3) and
(4) with the drop and turn disturbances removed, gives the
open loop dynamics as:

θ̇inc = VropKdlsUinc (7)

θ̇azi =
Vrop

sin θinc
KdlsUazi (8)

Therefore the control transformations, (5) and (6), partially
linearize and decouple the governing equations.

III. PLANT BILINEARIZATION

In this section, a technique called Carleman Bilinearization
described in [8], is applied on the partially linearized and
decoupled plant, (7) and (8), to obtain a bilinear model of
the directional drilling tool. Ignoring disturbances, (7) and (8)
are re-written as

θ̇inc = aUinc (9)

θ̇azi =
a

sin θinc
Uazi

where a = VropKdls. Defining an augmented state vector for
the Carleman Bilinearization as:

x⊗ = [x1, x
(2)
1 , x

(3)
1 , x

(4)
1 , ..., x

(N)
1 , x2]T

where x1 = θinc, x2 = θazi and x(i)
1 = d

dt

[
(x1)

i
]

= iẋ1x
(i−1)
1

leads to an extended bilinear state space system:

ẋ1 = aUinc (10)

ẋ2 = aUazi csc(x1) = aUazi sec(π/2− x1) = aUazi

∞∑
i=1

bix
(i)
1

where bi are the coefficients of the Taylor series expansion of
sec (π/2− x). The expansion of sec (π/2− x) is used instead
of csc (x) so that the required powers of x(i)

1 can be obtained



from the θinc state equation. The Taylor series expansion of
secx for −π2 < x < π

2 is obtained from

secx = 1 +
x2

2
+

5x4

24
+

61x6

720
+ · · ·+ (−1)nE2nx

2n

(2n)!
(11)

where E2n is the Euler number [13, pp 81-99]. Hence, the
Taylor series expansion of sec (π/2− x) is given as:

sec (π/2− x) = 1 +
1

2
(π/2− x)2 +

5

24
(π/2− x)4

+
61

720
(π/2− x)6 + · · ·+ (−1)nE2n(π/2− x)2n

(2n)!
(12)

In practice the number of terms in the series expansion
and the number of augmented states is truncated to a finite
value N (where N is equal for the number of expansion
terms and augmented states) to an arbitrary degree of accuracy.
Expanding (10), gives the bilinear system:

ẋ1 = aUinc (13)

ẋ
(2)
1 = 2x1ẋ1 = 2ax1Uinc

ẋ
(3)
1 = 3x

(2)
1 ẋ1 = 3ax

(2)
1 Uinc

...
...

ẋ
(N)
1 = Nx

(N−1)
1 ẋ1 = Nax

(N−1)
1 Uinc

ẋ2 = aUazi

N∑
i=1

bix
(i)
1

which is in the form of (1); where A = [ ], u = [Uinc, Uazi]
T

and x = x⊗. For example, where N = 3, the following is
obtained:

M1 =


0 0
2a 0
0 0
0 ab1

 , M2 =


0 0
0 0
3a 0
0 ab2

 , (14)

M3 =


0 0
0 0
0 0
0 ab3

 , B =


a 0
0 0
0 0
0 0


IV. CONTROL DESIGN

The proposed scheme for the BPI controller design is shown
in Figure 2. The BPI controller scheme is inspired by [14], [15]
and is a combination of a bilinear compensator and a standard
linear Proportional plus Integral (PI) controller. The bilinear
compensator is only incorporated on the azimuth feedback
loop to account for the nonlinear 1/ sin θinc term in (4).

A. PI Controller

The PI control for the inclination and azimuth control
channels are respectively:

Uinc = kpieinc + kii

∫ t

0

eincdt (15)

Ũazi = kpaeazi + kia

∫ t

0

eazidt (16)
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Fig. 2. BPI Control Scheme

where einc = rinc − θinc and eazi = razi − θazi; rinc and razi

are the nominal operating points for inclination and azimuth,
respectively.

It is shown in [9] that the gains for the PI controllers in the
inclination and azimuth feedback loops can be expressed as:

kii =
ω2

i

a
, kpi =

√
2ωi

a
(17)

kia =
ω2

a

a csc θinc
, kpa =

√
2ωa

a csc θinc
(18)

which are dependent on the operating point operating point
a = VropKdls and on the chosen natural frequencies of the
inclination and azimuth feedback loop dynamics, ωi and ωa

respectively.

B. Bilinear Compensator

Assuming that Uazi = Ũazi, hence, only the PI controller
is incorporated (see (16)), the azimuth feedback loop can be
expressed based on (10) as:

θ̇azi = a

∞∑
i=1

bix
(i)
1 (kpaeazi + kia

∫ t

0

eazidt) (19)

Based on (12) and (13), (19) can further be expressed as:

θ̇azi = a(1+
1

2
β2+

5

24
β4+. . . )(kpaeazi+kia

∫ t

0

eazidt) (20)

where β = π/2−θinc. In order to account for the nonlinearity
in (20), a bilinear compensator is proposed. The bilinear
compensator for the azimuth feedback loop is given as:

Uazi

Ũazi

=
1

1 + 1
2β

2 + 5
24β

4
(21)

The bilinear compensator, in combination with PI, facilitates
the ensuing controller (BPI) to sustain a required degree of
control throughout a broader scope of operation about the
tuning point compared to that obtained with the PI. Hence, the
BPI will give improved invariant azimuth responses compared
to that obtained with the PI.

V. SIMULATION RESULTS

In this section, transient responses from simulations using
Simulink for the closed loop controlled system using two
models are presented. The first model is a ‘Low Fidelity
Model’ and simulation results for a variety of response under
different operating conditions and assumptions are presented.



For comparison purposes, responses of the PI controller with-
out the bilinear compensator are also provided. The second
model is a ‘High Fidelity Model’ which includes the actuator
and drill cycle effects briefly discussed in Section II-A. The
parameter set used for the simulations are listed in Table I.

TABLE I
DESIGN PARAMETERS AND OPERATING POINT VALUES

Parameter Value
θinc, θazi π/6 rad (30◦)
Vrop 200 ft/hr (1.0158 m/min)
Kdls 8◦/100 ft (4.5809 × 10−3 rad/m)
rinc, razi π/6 + 0.015 rad
ωa 0.0151 rad/min
ωi 0.0121 rad/min
Ta 0.05 s (8.333 × 10−4 min)
kp 1 s−1 (60 min−1)
kvp 0.5
kvi 6 s−1 (360 min−1)
tcycle 10 s (0.1667 min)
ωtf 2π rad/s (376.991 rad/min)

A. Low Fidelity Model Simulation

Using the nonlinear plant model given by (3) and (4) (with
Vdr and Vtr ignored), control architecture and BPI controller
design described in Section IV, a Simulink transient simulation
was created to show the effectiveness of the proposed BPI
controller over the already existing PI controller. In the interest
of viewing the dynamic responses, the saturation effect is
removed. A reference change of 0.015 rad for a set of various
azimuth angles of π/18 rad, π/9 rad, π/6 rad, π/3 rad and
π/2 rad are implemented to investigate the invariance of the
azimuth responses of the BPI and PI. Furthermore, to analyse
the effect of time delay on the feedback measurements with
respect to the stability and performance on the BPI controller
design, the system delays are implemented.
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Fig. 3. BPI Azimuth Response

Figures 3, 4, 5 and 6 are responses based on the simulation
of the low fidelity model. The BPI and PI azimuth responses
for a reference change of 0.015 rad for a set of various azimuth
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Fig. 4. PI Azimuth Response

angles are shown in Figures 3 and 4, respectively, and where
∆θazi(t) = θazi(t)−θazi(0). Comparing the azimuth responses
of BPI and PI, it can be seen that the azimuth responses for the
BPI tend to converge more closely to the nominal operating
point of π/2 rad. Hence, the BPI controller gives a more
consistent azimuth responses than the PI controller.
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Fig. 5. BPI and PI Inclination Response With Feedback Delay

Figures 5 and 6 respectively show the inclination and
azimuth responses with feedback delay of 12 s. As expected,
it can be seen in Figure 5 that the inclination responses
for both BPI and PI are similar. Nonetheless, in Figure 6,
the PI controller exhibits oscillatory characteristics, hence,
the azimuth attitude of the directional drilling tool does not
converge to the desired angle of π/6 + 0.015 rad. Conversely,
for the BPI controller, the azimuth attitude of the directional
drilling tool converges to the desired angle of π/6+0.015 rad.
Hence, the proposed BPI controller reduces the adverse effects
of time delay on the feedback measurements with respect to
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stability and performance, as compared to the PI controller
(see Figure 6).

B. High Fidelity Model Simulation
The high fidelity model simulation models the drilling cycle

shown in Figure 8 as implemented in [16] and [12], the
accelerometers and magnetometers used to derive the azimuth
and inclination measurements explicitly and all the system
delays and lags previously discussed and detailed in [9]. Based
on this, a Simulink transient simulation was created to test
directional drilling using the attitude control algorithm to hold
azimuth and inclination at the desired angles of π/6 + 0.015
rad and π/6+0.015 rad, respectively. The high fidelity model
architecture is shown in Figure 7.

Fig. 7. Simulink Diagram of High Fidelity Model Simulation Scheme
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Fig. 8. Drilling Cycle Definition

In order to engineer a variable curvature, Udls, the tool face
actuation Utf (control input) is discretized into duty cycles

known as ‘drilling cycles’ of period tcycle where in order to
approximate the Udls control input tcycle is proportioned into
the bias, tbias, and neutral tneutral, phases as shown in Figure
8. In the tneutral phase the Utf is cycled at a constant rate
of period tnutate whilst in the tbias phase the Utf is servo
controlled constant. This approximates the Udls control input
as Udls = (tbias/tcycle)Kdls.

The tool-face is driven by a servo mechanism, hence the
tool face response to demands in the tool face is subject to
lag dynamics. The servo control architecture is as shown in
Figure 9, where Ta is the time constant of the servo loop,
kp is the proportional term in servo position loop, and the
proportional and integral term in servo velocity loop are kvp

and kvi, respectively.
The servo operates as a position control when in the bias

phase and as a speed control in the neutral phase. Integral
action is placed in the velocity loop to ensure accurate rotation
speed of the tool face in the neutral phase. This means that
integral action is not required in the outer loop position control
loop, so a proportional controller is used here. This has an
added advantage of removing the need for anti windup and
bumpless transfer for the switching between position and
velocity tracking.
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kvp+ kvi
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Fig. 9. Toolface Servo Control Architecture

The tool face controller switch is operated so that during the
neutral phase, a constant nutate rate demand, ωtf , is applied to
the servo control system speed demand. During the bias phase,
the required toolface angle is applied as a reference demand,
Ûtf , to the servo control system angle position demand.

Note however, from Figure 10, that at the end of the
neutral phase there is a difference between the required
toolface angle and the actual toolface angle. Hence, at the
start of the drill cycle, there is a change to time, ∆tneutral

when the switch from tneutral to tbias is calculated. From
Figure 10, the calculation is straightforward and is given by
∆tneutral = ∆Utf

ωtf
, where ∆Utf ∈ [−π, π) is the toolface

correction angle given by ∆Utf = α − round(α, 2π), where
α = ωtftneutral+Utf(k−1)−Utf(k−1), Utf(k) represents the
toolface demand for the current (kth) drill cycle and Utf(k−1)
represents the toolface demand for the previous ((k−1)th) drill
cycle.

Figures 11 and 12 are the inclination and azimuth responses,
respectively, based on the simulation of the high fidelity model
with feedback delay of 7.7 s. It can be seen in Figures 11 and
12 that the proposed attitude control algorithm is able to hold
the inclination and azimuth of the directional drilling tool at
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Fig. 10. Calculation of ∆tneutral for kth Drilling Cycle

the desired angles of π/6 + 0.015 rad and π/6 + 0.015 rad,
respectively (as shown in Table I).
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VI. CONCLUSIONS

This paper proposes a bilinear model of the directional
drilling tool, and also highlights the design of a bilinear

controller (BPI) for attitude control of directional drilling tool.
This effective implementation shows the possible beneficial
aspects of the BPI controller through the improved invariant
azimuth responses; and also through the reduction of the
adverse effects of time delay on the feedback measurements
with respect to stability and performance, as compared to the
already existing PI controller. The proposed BPI controller
gives more consistent responses over a wider range of oper-
ation of the directional drilling tool compared to the already
existing PI controller.
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