79 research outputs found

    Final-State Constrained Optimal Control via a Projection Operator Approach

    Full text link
    In this paper we develop a numerical method to solve nonlinear optimal control problems with final-state constraints. Specifically, we extend the PRojection Operator based Netwon's method for Trajectory Optimization (PRONTO), which was proposed by Hauser for unconstrained optimal control problems. While in the standard method final-state constraints can be only approximately handled by means of a terminal penalty, in this work we propose a methodology to meet the constraints exactly. Moreover, our method guarantees recursive feasibility of the final-state constraint. This is an appealing property especially in realtime applications in which one would like to be able to stop the computation even if the desired tolerance has not been reached, but still satisfy the constraints. Following the same conceptual idea of PRONTO, the proposed strategy is based on two main steps which (differently from the standard scheme) preserve the feasibility of the final-state constraints: (i) solve a quadratic approximation of the nonlinear problem to find a descent direction, and (ii) get a (feasible) trajectory by means of a feedback law (which turns out to be a nonlinear projection operator). To find the (feasible) descent direction we take advantage of final-state constrained Linear Quadratic optimal control methods, while the second step is performed by suitably designing a constrained version of the trajectory tracking projection operator. The effectiveness of the proposed strategy is tested on the optimal state transfer of an inverted pendulum

    How do microbiota associated with an invasive seaweed vary across scales?

    Get PDF
    Communities are shaped by scale dependent processes. To study the diversity and variation of microbial communities across scales, the invasive and widespread seaweed Agarophyton vermiculophyllum presents a unique opportunity. We characterized pro‐ and eukaryotic communities associated with this holobiont across its known distribution range, which stretches over the northern hemisphere. Our data reveal that community composition and diversity in the holobiont vary at local but also larger geographic scales. While processes acting at the local scale (i.e., within population) are the main structuring drivers of associated microbial communities, changes in community composition also depend on processes acting at larger geographic scales. Interestingly, the largest analysed scale (i.e., native and non‐native ranges) explained variation in the prevalence of predicted functional groups, which could suggest a functional shift in microbiota occurred over the course of the invasion process. While high variability in microbiota at the local scale supports A. vermiculophyllum to be a generalist host, we also identified a number of core taxa. These geographically independent holobiont members imply that cointroduction of specific microbiota may have additionally promoted the invasion process

    The carotid plaque imaging in acute stroke (CAPIAS) study:

    Get PDF
    Background: In up to 30% of patients with ischemic stroke no definite etiology can be established. A significant proportion of cryptogenic stroke cases may be due to non-stenosing atherosclerotic plaques or low grade carotid artery stenosis not fulfilling common criteria for atherothrombotic stroke. The aim of the CAPIAS study is to determine the frequency, characteristics, clinical and radiological long-term consequences of ipsilateral complicated American Heart Association lesion type VI (AHA-LT VI) carotid artery plaques in patients with cryptogenic stroke. Methods/Design: 300 patients (age > 49 years) with unilateral DWI-positive lesions in the anterior circulation and non- or moderately stenosing (<70% NASCET) internal carotid artery plaques will be enrolled in the prospective multicenter study CAPIAS. Carotid plaque characteristics will be determined by high-resolution black-blood carotid MRI at baseline and 12 month follow up. Primary outcome is the prevalence of complicated AHA-LT VI plaques in cryptogenic stroke patients ipsilateral to the ischemic stroke compared to the contralateral side and to patients with defined stroke etiology. Secondary outcomes include the association of AHA-LT VI plaques with the recurrence rates of ischemic events up to 36 months, rates of new ischemic lesions on cerebral MRI (including clinically silent lesions) after 12 months and the influence of specific AHA-LT VI plaque features on the progression of atherosclerotic disease burden, on specific infarct patterns, biomarkers and aortic arch plaques. Discussion: CAPIAS will provide important insights into the role of non-stenosing carotid artery plaques in cryptogenic stroke. The results might have implications for our understanding of stroke mechanism, offer new diagnostic options and provide the basis for the planning of targeted interventional studies

    Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Full text link
    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in the coupled dots. We show that, in both cases, the Faraday rotation angle is determined by the spin transfer probabilities and the Heisenberg spin exchange energy. By comparison of our results with experimental data, we find that the transfer matrix element for electrons in the conduction band is of order 0.08 eV and the spin transfer probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change

    Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication

    Get PDF
    To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated). Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously “pre-adapted” flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits

    Deep strong light-matter coupling in plasmonic nanoparticle crystals

    Get PDF
    In the regime of deep strong light–matter coupling, the coupling strength exceeds the transition energies of the material, fundamentally changing its properties; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect—the increase of radiative damping through light–matter coupling—and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light–matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology

    South American Hydrological Balance and Paleoceanography during the Late Pleistocene and Holocene (SAMBA) – Cruise No. M125, March 21 – April 15, 2016 - Rio de Janeiro (Brazil) – Fortaleza (Brazil)

    Get PDF
    R/V METEOR expedition M125 (“SAMBA”) focused on the influence of paleoceanographic changes off NE Brazil on the continental hydrological cycle. For this purpose, we obtained 202 m of gravity (24 stations) and piston cores (9) at seven sections on the shelf and continental slope close to river mouths from Cabo Frio in the south to the Rio Sao Francisco in the north. Coring stations were determined after intensive echosounder surveys (total: 1221 NM). On-board foraminiferal biostratigraphy, as well as color and XRF-scanning already provided first stratigraphic constraints, indicating the preservation of different regional paleoclimatic signals at the respective sections. Based on the preliminary stratigraphy, we retrieved high-resolution archives, covering Holocene sediments on the shelf and late Pleistocene sediments on the slope. These high-resolution archives are complemented by long-term records covering up to 900 ka of continuous sedimentation at deeper sites at smaller rivers. For proxy-calibration and the study of present-day sedimentation dynamics and biogeochemical processes, surface sediments were sampled via multicorer (47), Van Veen Grab (6) and box corer (3). Water samples for determination of the water chemistry (trace elements, stable and radiogenic isotopes) and nutrient composition were retrieved by 55 CTD/Rosette casts. In addition, we run multinet-hauls at seven stations to investigate the planktonic foraminiferal communities in the water column down to 700 m water depth, complemented by filtering water from the ship’s pump twice a day
    • 

    corecore