704 research outputs found

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin

    Transformation of autophagic SQSTM1 droplets to SQSTM1-dependent P-bodies

    Get PDF
    SQSTM1/p62 droplets play crucial roles in droplets-based macroautophagy/autophagy including selective autophagy and bulk autophagy. We observed that under several stress milieus, SQSTM1 droplets entirely colocalize with P-body markers, and these stress-induced SQSTM1 droplets contain mRNAs. We thus determined that under certain stress conditions, autophagic SQSTM1 droplets are converted to a type of enlarged P-bodies, designated SQSTM1/p62-dependent P-bodies (pd-PBs). Stress-enhanced SQSTM1 droplet formation drives the nucleation of pd-PBs through the interaction between SQSTM1 and the RNA-binding protein DDX6. Furthermore, pd-PBs sequester PYCARD, facilitating the assembly of NLRP3 inflammasomes, and in turn induce inflammation-related cytotoxicity. Our study suggests that under stress settings, autophagic SQSTM1 droplets are transformed to pd-PBs, underlining a critical role of SQSTM1 in P-body condensation

    "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds

    Get PDF
    The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ¹³C and δ¹⁵N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface

    Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach

    Get PDF
    This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions

    Contrasting the Percutaneous Nerve Evaluation Versus Staged Implantation in Sacral Neuromodulation

    Get PDF
    Sacral neuromodulation is increasingly used for the treatment of voiding dysfunction, pelvic pain syndromes, and gastrointestinal disorders. While increased use of this technology has led to a greater understanding of its potential as well as its limitations, difficulty persists in identifying the patients that will benefit most. Either of two trial stimulation techniques is performed before placement of a permanent neuromodulator: the monopolar percutaneous nerve evaluation and the tined quadripolar staged trial. The preponderance of recent literature asserts the superior sensitivity of the staged trial over percutaneous nerve evaluation. However, the techniques offer disparate advantages, and other issues, such as cost-effectiveness, remain largely unexplored. The role of sacral neuromodulation will continue to expand as physicians and patients become increasingly aware of its therapeutic potential. Widespread adoption of this clinically superior technique will most rapidly help the greatest number of patients

    Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods

    Get PDF
    High quality CdS nanorods are synthesized reproducibly with cadmium acetate and sulfur as precursors in trioctylphosphine solution. The morphology, crystalline form and phase composition of CdS nanorods are characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). CdS nanorods obtained are uniform with an aspect ratio of about 5:1 and in a wurtzite structure. The influence of reaction conditions on the growth of CdS nanorods demonstrates that low precursor concentration and high reaction temperature (260 °C) are favorable for the formation of uniform CdS nanorods with 85.3% of product yield

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
    corecore