1,937 research outputs found

    Planar lattice gases with nearest-neighbour exclusion

    Full text link
    We discuss the hard-hexagon and hard-square problems, as well as the corresponding problem on the honeycomb lattice. The case when the activity is unity is of interest to combinatorialists, being the problem of counting binary matrices with no two adjacent 1's. For this case we use the powerful corner transfer matrix method to numerically evaluate the partition function per site, density and some near-neighbour correlations to high accuracy. In particular for the square lattice we obtain the partition function per site to 43 decimal places.Comment: 16 pages, 2 built-in Latex figures, 4 table

    Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'

    Full text link
    Earlier this year Chan extended the low-density series for the hard-squares partition function κ(z)\kappa(z) to 92 terms. Here we analyse this extended series focusing on the behaviour at the dominant singularity zdz_d which lies on on the negative fugacity axis. We find that the series has a confluent singularity of order 2 at zdz_d with exponents θ=0.83333(2)\theta=0.83333(2) and θ=1.6676(3)\theta'= 1.6676(3). We thus confirm that the exponent θ\theta has the exact value 56\frac56 as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio

    Family intentions of women with one child : an Armidale study

    No full text
    This study is concerned with the family intentions of married women in Armidale, a medium sized country town in northern New South Wales. The surveyed women had their first baby in 1976, a year when the two child family was the preference of a majority of Australian women. Previously recorded differentials in family size such as religion, age at marriage and education had narrowed to the point where they were barely measurable. The study focuses on fertility in an extra metropolitan area, the timing of the first birth after marriage as a life cycle event, the spacing of further children and the ultimate family size anticipated

    A study of logarithmic corrections and universal amplitude ratios in the two-dimensional 4-state Potts model

    Full text link
    Monte Carlo (MC) and series expansion (SE) data for the energy, specific heat, magnetization and susceptibility of the two-dimensional 4-state Potts model in the vicinity of the critical point are analysed. The role of logarithmic corrections is discussed and an approach is proposed in order to account numerically for these corrections in the determination of critical amplitudes. Accurate estimates of universal amplitude ratios A+/AA_+/A_-, Γ+/Γ\Gamma_+/\Gamma_-, ΓT/Γ\Gamma_T/\Gamma_- and RC±R_C^\pm are given, which arouse new questions with respect to previous works

    Particle motion and stain removal during simulated abrasive tooth cleaning

    Get PDF
    Stain removal from teeth is important both to prevent decay and for appearance. This is usually achieved using a filament-based toothbrush with a toothpaste consisting of abrasive particles in a carrier fluid. This work has been carried out to examine how these abrasive particles interact with the filaments and cause material removal from a stain layer on the surface of a tooth. It is important to understand this mechanism as while maximum cleaning efficiency is required, this must not be accompanied by damage to the enamel or dentine substrate. In this work simple abrasive scratch tests were used to investigate stain removal mechanism of two abrasive particles commonly used in tooth cleaning, silica and perlite. Silica particles are granular in shape and very different to perlite particles, which are flat and have thicknesses many times smaller than their width. Initially visualisation studies were carried out with perlite particles to study how they are entrained into a filament/counterface contact. Results were compared with previous studies using silica. Reciprocating scratch tests were then run to study how many filaments have a particle trapped at one moment and are involved in the cleaning process. Stain removal tests were then carried out in a similar manner to establish cleaning rates with the two particle types. Perlite particles were found to be less abrasive than silica. This was because of their shape and how they were entrained into the filament contacts and loaded against a counterface. With both particles subsurface damage during stain removal was found to be minimal. A simple model was built to predict stain removal rates with silica particles, which gave results that correlated well with the experimental data

    Universal ratios of critical amplitudes in the Potts model universality class

    Full text link
    Monte Carlo (MC) simulations and series expansions (SE) data for the energy, specific heat, magnetization, and susceptibility of the three-state and four-state Potts model and Baxter-Wu model on the square lattice are analyzed in the vicinity of the critical point in order to estimate universal combinations of critical amplitudes. We also form effective ratios of the observables close to the critical point and analyze how they approach the universal critical-amplitude ratios. In particular, using the duality relation, we show analytically that for the Potts model with a number of states q4q\le 4, the effective ratio of the energy critical amplitudes always approaches unity linearly with respect to the reduced temperature. This fact leads to the prediction of relations among the amplitudes of correction-to-scaling terms of the specific heat in the low- and high-temperature phases. It is a common belief that the four-state Potts and the Baxter-Wu model belong to the same universality class. At the same time, the critical behavior of the four-state Potts model is modified by logarithmic corrections while that of the Baxter-Wu model is not. Numerical analysis shows that critical amplitude ratios are very close for both models and, therefore, gives support to the hypothesis that the critical behavior of both systems is described by the same renormalization group fixed point.Comment: Talk presented at CCP 2008, Ouro Preto, 5-9 August 200

    Spanning tree generating functions and Mahler measures

    Full text link
    We define the notion of a spanning tree generating function (STGF) anzn\sum a_n z^n, which gives the spanning tree constant when evaluated at z=1,z=1, and gives the lattice Green function (LGF) when differentiated. By making use of known results for logarithmic Mahler measures of certain Laurent polynomials, and proving new results, we express the STGFs as hypergeometric functions for all regular two and three dimensional lattices (and one higher-dimensional lattice). This gives closed form expressions for the spanning tree constants for all such lattices, which were previously largely unknown in all but one three-dimensional case. We show for all lattices that these can also be represented as Dirichlet LL-series. Making the connection between spanning tree generating functions and lattice Green functions produces integral identities and hypergeometric connections, some of which appear to be new.Comment: 26 pages. Dedicated to F Y Wu on the occasion of his 80th birthday. This version has additional references, additional calculations, and minor correction

    Directed Branched Polymer near an Attractive Line

    Full text link
    We study the adsorption-desorption phase transition of directed branched polymer in d+1d+1 dimensions in contact with a line by mapping it to a dd dimensional hard core lattice gas at negative activity. We solve the model exactly in 1+1 dimensions, and calculate the crossover exponent related to fraction of monomers adsorbed at the critical point of surface transition, and we also determine the density profile of the polymer in different phases. We also obtain the value of crossover exponent in 2+1 dimensions and give the scaling function of the sticking fraction for 1+1 and 2+1 dimensional directed branched polymer.Comment: 19 pages, 4 figures, accepted for publication in J. Phys. A:Math. Ge

    Thermodynamics of a finite system of classical particles with short and long range interactions and nuclear fragmentation

    Get PDF
    We describe a finite inhomogeneous three dimensional system of classical particles which interact through short and (or) long range interactions by means of a simple analytic spin model. The thermodynamic properties of the system are worked out in the framework of the grand canonical ensemble. It is shown that the system experiences a phase transition at fixed average density in the thermodynamic limit. The phase diagram and the caloric curve are constructed and compared with numerical simulations. The implications of our results concerning the caloric curve are discussed in connection with the interpretation of corresponding experimental data.Comment: 11pages, LaTeX, 6 figures. Major change : A new section dealing with numerical simulations in the framework of a cellular model has been adde

    Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene

    Get PDF
    We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth β-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K+-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the α-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general. © 2008 The Authors
    corecore