47 research outputs found

    Augmented Reality for the assessment of children's spatial memory in real settings

    Get PDF
    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. There are no available, specific, and adapted instruments to study the development of memory and spatial orientation in people while they are moving. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children s skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N=76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent s questionnaire about a child s everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task s usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect school academic achievementFunded by the Spanish Government (MINECO) and European Regional Development Fund (FEDER) in the CHILDMNEMOS project TIN2012-37381-C02-01, Gobierno de Aragon (Dpt. Industria e Innovacion), Fondo Social Europeo, Fundacion Universitaria Antonio Gargallo and Obra Social Ibercaja. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Juan, M.; Mendez Lopez, M.; Pérez Hernández, E.; Albiol Pérez, S. (2014). Augmented Reality for the assessment of children's spatial memory in real settings. PLoS ONE. 9(12):113751-113771. https://doi.org/10.1371/journal.pone.0113751S113751113771912Linn, M. C., & Petersen, A. C. (1985). Emergence and Characterization of Sex Differences in Spatial Ability: A Meta-Analysis. Child Development, 56(6), 1479. doi:10.2307/1130467Simmons, F. R., Willis, C., & Adams, A.-M. (2012). Different components of working memory have different relationships with different mathematical skills. Journal of Experimental Child Psychology, 111(2), 139-155. doi:10.1016/j.jecp.2011.08.011Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi:10.1016/j.jecp.2009.11.003Bavin, E. L., Wilson, P. H., Maruff, P., & Sleeman, F. (2005). Spatio‐visual memory of children with specific language impairment: evidence for generalized processing problems. International Journal of Language & Communication Disorders, 40(3), 319-332. doi:10.1080/13682820400027750Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674-2688. doi:10.1016/j.cortex.2013.06.007Mammarella, I. C., & Cornoldi, C. (2013). An analysis of the criteria used to diagnose children with Nonverbal Learning Disability (NLD). Child Neuropsychology, 20(3), 255-280. doi:10.1080/09297049.2013.796920Alloway TP (2007) Automated Working Memory Assessment. London: The Psychological Corporation.Oades, R. D., & Isaacson, R. L. (1978). The development of food search behavior by rats: The effects of hippocampal damage and haloperidol. Behavioral Biology, 24(3), 327-337. doi:10.1016/s0091-6773(79)90184-6Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60. doi:10.1016/0165-0270(84)90007-4Olton, D. S. (1987). The radial arm maze as a tool in behavioral pharmacology. Physiology & Behavior, 40(6), 793-797. doi:10.1016/0031-9384(87)90286-1Méndez-López, M., Méndez, M., López, L., & Arias, J. L. (2009). Sexually dimorphic c-Fos expression following spatial working memory in young and adult rats. Physiology & Behavior, 98(3), 307-317. doi:10.1016/j.physbeh.2009.06.006Munoz M, Morris RGM (2009) Episodic memory in animals. In:Squire LR editor. New Encyclopedia of Neuroscience. Oxford: Academic Press. pp.1173–1182.SHORE, D. I., STANFORD, L., MACINNES, W. J., KLEIN, R. M., & BROWN, R. E. (2001). Of mice and men: Virtual Hebb-Williams mazes permit comparison of spatial learning across species. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 83-89. doi:10.3758/cabn.1.1.83Astur, R. S., Taylor, L. B., Mamelak, A. N., Philpott, L., & Sutherland, R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behavioural Brain Research, 132(1), 77-84. doi:10.1016/s0166-4328(01)00399-0Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation☆. Behavioural Brain Research, 151(1-2), 103-115. doi:10.1016/j.bbr.2003.08.024Sturz, B. R., & Bodily, K. D. (2010). Encoding of variability of landmark-based spatial information. Psychological Research, 74(6), 560-567. doi:10.1007/s00426-010-0277-4Cánovas, R., García, R. F., & Cimadevilla, J. M. (2011). Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Behavioural Brain Research, 216(1), 116-121. doi:10.1016/j.bbr.2010.07.026Cimadevilla, J. M., Cánovas, R., Iribarne, L., Soria, A., & López, L. (2011). A virtual-based task to assess place avoidance in humans. Journal of Neuroscience Methods, 196(1), 45-50. doi:10.1016/j.jneumeth.2010.12.026Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149-178. doi:10.1016/0010-0277(86)90041-7Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events. NeuroImage, 14(2), 439-453. doi:10.1006/nimg.2001.0806Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The Human Hippocampus and Spatial and Episodic Memory. Neuron, 35(4), 625-641. doi:10.1016/s0896-6273(02)00830-9Passolunghi, M. C., & Mammarella, I. C. (2011). Selective Spatial Working Memory Impairment in a Group of Children With Mathematics Learning Disabilities and Poor Problem-Solving Skills. Journal of Learning Disabilities, 45(4), 341-350. doi:10.1177/0022219411400746Thomas, E., Reeve, R., Fredrickson, A., & Maruff, P. (2011). Spatial memory and executive functions in children. Child Neuropsychology, 17(6), 599-615. doi:10.1080/09297049.2011.567980SPOONER, D., & PACHANA, N. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327-337. doi:10.1016/j.acn.2006.04.004Juan, M. C., Alcaniz, M., Monserrat, C., Botella, C., Banos, R. M., & Guerrero, B. (2005). Using Augmented Reality to Treat Phobias. IEEE Computer Graphics and Applications, 25(6), 31-37. doi:10.1109/mcg.2005.143Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Costa, M. (2013). The effects of the size and weight of a mobile device on an educational game. Computers & Education, 64, 24-41. doi:10.1016/j.compedu.2012.12.015Juan MC, Furió D, Alem L, Ashworth P, Cano J (2011) ARGreenet and BasicGreenet: Two mobile games for learning how to recycle. Proceedings of the 19th International Conference on Computer Graphics, Visualization and Computer Vision. pp.25–32.Furió, D., González-Gancedo, S., Juan, M.-C., Seguí, I., & Rando, N. (2013). Evaluation of learning outcomes using an educational iPhone game vs. traditional game. Computers & Education, 64, 1-23. doi:10.1016/j.compedu.2012.12.001Albrecht, U.-V., Folta-Schoofs, K., Behrends, M., & von Jan, U. (2013). Effects of Mobile Augmented Reality Learning Compared to Textbook Learning on Medical Students: Randomized Controlled Pilot Study. Journal of Medical Internet Research, 15(8), e182. doi:10.2196/jmir.2497Liu, P.-H. E., & Tsai, M.-K. (2012). Using augmented-reality-based mobile learning material in EFL English composition: An exploratory case study. British Journal of Educational Technology, 44(1), E1-E4. doi:10.1111/j.1467-8535.2012.01302.xBaddeley AD (1986) Working memory. Oxford: Clarendon Press.Alloway TP (2012) Working Memory Assessment. Second Edi. London: Pearson Assessment.Kamphaus KW, Perez-Hernandez E, Sanchez-Sanchez F (2014) Cuestionario de Evaluación Clínica de la Memoria. In press. Madrid: TEA Ediciones.Smith, A. D., Gilchrist, I. D., & Hood, B. M. (2005). Children’s Search Behaviour in Large-Scale Space: Developmental Components of Exploration. Perception, 34(10), 1221-1229. doi:10.1068/p5270Piccardi, L., Palermo, L., Leonzi, M., Risetti, M., Zompanti, L., D’Amico, S., & Guariglia, C. (2014). The Walking Corsi Test (WalCT): A Normative Study of Topographical Working Memory in a Sample of 4- to 11-Year-Olds. The Clinical Neuropsychologist, 28(1), 84-96. doi:10.1080/13854046.2013.863976Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The Structure of Working Memory From 4 to 15 Years of Age. Developmental Psychology, 40(2), 177-190. doi:10.1037/0012-1649.40.2.177Best, J. R., & Miller, P. H. (2010). A Developmental Perspective on Executive Function. Child Development, 81(6), 1641-1660. doi:10.1111/j.1467-8624.2010.01499.xBianchini, F., Incoccia, C., Palermo, L., Piccardi, L., Zompanti, L., Sabatini, U., … Guariglia, C. (2010). Developmental topographical disorientation in a healthy subject. Neuropsychologia, 48(6), 1563-1573. doi:10.1016/j.neuropsychologia.2010.01.025Iaria, G., & Barton, J. J. S. (2010). Developmental topographical disorientation: a newly discovered cognitive disorder. Experimental Brain Research, 206(2), 189-196. doi:10.1007/s00221-010-2256-9Lowe, P. A., Mayfield, J. W., & Reynolds, C. R. (2003). Gender differences in memory test performance among children and adolescents. Archives of Clinical Neuropsychology, 18(8), 865-878. doi:10.1093/arclin/18.8.865Barnfield, A. M. C. (1999). Development of Sex Differences in Spatial Memory. Perceptual and Motor Skills, 89(1), 339-350. doi:10.2466/pms.1999.89.1.339Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The working memory rating scale: A classroom-based behavioral assessment of working memory. Learning and Individual Differences, 19(2), 242-245. doi:10.1016/j.lindif.2008.10.003Injoque-Ricle, I., Calero, A. D., Alloway, T. P., & Burin, D. I. (2011). Assessing working memory in Spanish-speaking children: Automated Working Memory Assessment battery adaptation. Learning and Individual Differences, 21(1), 78-84. doi:10.1016/j.lindif.2010.09.012Jones, A., Scanlon, E., Tosunoglu, C., Morris, E., Ross, S., Butcher, P., & Greenberg, J. (1999). Contexts for evaluating educational software. Interacting with Computers, 11(5), 499-516. doi:10.1016/s0953-5438(98)00064-2Mayes, J. ., & Fowler, C. . (1999). Learning technology and usability: a framework for understanding courseware. Interacting with Computers, 11(5), 485-497. doi:10.1016/s0953-5438(98)00065-4Squires, D., & Preece, J. (1999). Predicting quality in educational software: Interacting with Computers, 11(5), 467-483. doi:10.1016/s0953-5438(98)00063-0Sun, P.-C., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4), 1183-1202. doi:10.1016/j.compedu.2006.11.007Lee, S. J., Srinivasan, S., Trail, T., Lewis, D., & Lopez, S. (2011). Examining the relationship among student perception of support, course satisfaction, and learning outcomes in online learning. The Internet and Higher Education, 14(3), 158-163. doi:10.1016/j.iheduc.2011.04.001Lyons KE, Zelazo PD (2011) Monitoring, metacognition, and executive function: elucidating the role of self-reflection in the development of self-regulation. In:Benson Jeditor. Advances in Child Development and Behavior. Burlington: Academic Press. pp.379–412

    A gestural repertoire of 1-2year old human children : in search of the ape gestures

    Get PDF
    This project was made possible with the generous financial help of the Baverstock Bequest to the Psychology and Neuroscience Department at the University of St Andrews.When we compare human gestures to those of other apes, it looks at first like there is nothing much to compare at all. In adult humans, gestures are thought to be a window into the thought processes accompanying language, and sign languages are equal to spoken language with all of its features. While some research firmly emphasises the difference between human gestures and those of other apes, the question about whether there are any commonalities has rarely been investigated, and is mostly confined to pointing gestures. The gestural repertoires of nonhuman ape species have been carefully studied and described with regard to their form and function – but similar approaches are much rarer in the study of human gestures. This paper applies the methodology commonly used in the study of nonhuman ape gestures to the gestural communication of human children in their second year of life. We recorded (n=13) children’s gestures in a natural setting with peers and caregivers in Germany and Uganda. Children employed 52 distinct gestures, 46 (89%) of which are present in the chimpanzee repertoire. Like chimpanzees, they used them both singly, and in sequences; and employed individual gestures flexibly towards different goals.Publisher PDFPeer reviewe

    Indigenous Children’s Language Practices in Australia

    No full text
    While the documentation of Australian Aboriginal and Torres Strait Islander languages has attracted considerable research attention, the use of these languages by children has only recently emerged as a field of research. Building on the small number of early studies of these children’s language acquisition, development, and practices, we review the now considerable variety of studies which have explored Australian Aboriginal children’s early language learning environments and processes. In this ecologically complex linguistic environment, studies investigate children’s acquisition of some remaining traditional languages—often in multilingual contexts, child-directed speech styles and practices, and the development of new and emerging contact languages—both mixed languages and creoles, and the ways that children and young people are altering and innovating the language ecologies. The studies focus particularly on those children who are being raised in remote settings where, while English is taught in school, it is neither the language the children learn as their first language nor the language of the community in which the children live
    corecore