13 research outputs found

    Acetylcholinesterase Inhibition of Diversely Functionalized Quinolinones for Alzheimer's Disease Therapy

    Get PDF
    In this communication, wereport the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer¿s disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 M), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation.R.A., M.S., P.B., and K.M. were supported by European Regional Development Fund/European Social Fund (ERDF/ESF, project PharmaBrain, no. CZ.02.1.01/0.0/0.0/16_025/0007444), University of Hradec Kralove (no. SV2113-2019, VT2019-2021), and EU COST action CA15135 MuTaLig. J.M.C. thanks Ministerio de Economía (MINECO, SAF2015-65586-R) and Universidad Camilo José Cela (UCJC, grants UCJC 2020-03, and UCJC 2020-33) for support

    Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases

    Get PDF
    J.M.C. thanks MINECO (SAF2012-33304 and SAF2015-65586-R). J.M.C., F.L.M., and A.R. thank UCJC for grants 2015-12, 2014-35, and 2015-21, respectively. J.E. thanks the Fondo de Investigaciones Sanitarias (FIS) (ISCIII/FEDER) (Programa Miguel Servet: CP14/00008 and PI16/00735) and Fundación Mutua Madrileña. O.S. and J.J. thank MHCZ-DRO (UHHK 00179906) for support. R.R.R., H.S., and J.M.C. acknowledge the EU COST Actions CM1103 and CM15135. E.P. and H.S. thank the German Research Foundation (DFG; PRO 1405/2-2, PRO 1405/4-1, SFB 1039 A07, and INST208/664-1).The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood–brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg−1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.PostprintPeer reviewe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Acetylcholinesterase Inhibition of Diversely Functionalized Quinolinones for Alzheimer’s Disease Therapy

    No full text
    In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer’s disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 µM), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation

    Tacrines as Therapeutic Agents for Alzheimer's Disease. V. Recent Developments

    No full text
    Herein we have reviewed our recent developments for the identification of new tacrine analogues for Alzheimer's disease (AD) therapy. Tacrine, the first cholinesterase inhibitor approved for AD treatment, did not stop the progression of AD, producing only some cognitive improvements, but exhibited secondary effects mainly due to its hepatotoxicity. Thus, the drug was withdrawn from the clinics administration. Since then, many publications have described non-hepatotoxic tacrines, and in addition, important efforts have been made to design multitarget tacrines by combining their cholinesterase inhibition profile with the modulation of other biological targets involved in AD.ÓB- A thanks Comunidad de Madrid and Universidad de Alcalá for a postdoctoral fellowship (“Atracción Talento”). DDI thanks the Spanish Ministry of Science, Innovation and Universities for pre-doctoral FPU grant

    Straightforward Synthesis of Bis[(trifluoromethyl)sulfonyl]ethylated Isocoumarins from 2-Ethynylbenzoates

    No full text
    Herein, we report a facile isocoumarin and isoquinolone preparation by taking advantage of an initial bis(triflyl)ethylation [triflyl = (trifluoromethyl)sulfonyl] reaction, followed by heterocyclization, which contrasts with our previous results on cyclobutene formation. The efficiency of the catalyst- and irradiation-free heterocyclization/bis(triflyl)ethylation sequence showed exquisite dependence on the electronic nature of the substituents at the 2-ethynylbenzoate(benzamide) precursors. Molecular docking of model bis(triflyl)ethylated isocoumarins on human acetylcholinesterase (hAChE) revealed promising biological activities through selective coordination on both the catalytic active site and peripheral active site.Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (MCIN/AEI), Fondo Europeo de Desarrollo Regional (FEDER),Consejo Superior de Investigaciones Cieníficas (CSIC)Depto. de Química OrgánicaFac. de Ciencias QuímicasTRUEpu

    Straightforward Synthesis of Bis[(trifluoromethyl)sulfonyl]ethylated Isocoumarins from 2-Ethynylbenzoates

    No full text
    Herein, we report a facile isocoumarin and isoquinolone preparation by taking advantage of an initial bis(triflyl)ethylation [triflyl = (trifluoromethyl)sulfonyl] reaction, followed by heterocyclization, which contrasts with our previous results on cyclobutene formation. The efficiency of the catalyst- and irradiation-free heterocyclization/bis(triflyl)ethylation sequence showed exquisite dependence on the electronic nature of the substituents at the 2-ethynylbenzoate(benzamide) precursors. Molecular docking of model bis(triflyl)ethylated isocoumarins on human acetylcholinesterase (hAChE) revealed promising biological activities through selective coordination on both the catalytic active site and peripheral active site.This work was supported by MCIN/AEI/10.13039/501100011033/FEDER (Projects PGC2018-095025-B-I00 and PID2021-122183NB-C21) and CSIC (Project 2021AEP096). A.S.P. thanks CAM and FEDER (YEI) for a contract

    Contilisant, a Tetratarget Small Molecule for Alzheimer's Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile

    No full text
    Contilisant, a permeable, antioxidant, and neuroprotectant agent, showing high nM affinity at H3R and excellent inhibition of the monoamine oxidases and cholinesterases, is an affine and selective S1R agonist in the nanomolar range, based on the binding affinity and functional experiment, a result confirmed by molecular modeling. In addition, contilisant significantly restores the cognitive deficit induced by Aβ in the radial maze assay in an in vivo Alzheimer's disease test, comparing very favorably with donepezil.J.M.-C. thanks MINECO (Grant SAF2015-65586-R), UCJC (Grants 2015-12, 2014-35, and 2015-21), and EU (COST Action CA15135) for support. J.M.-C. thanks Prof. Stark and Prof. Ramsay, as well as Prof. Jia (Beijing Normal University), Dr. Chioua (CSIC), and Dr. Romero (UCM) for their help and support.Peer Reviewe

    Development of HuperTacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer’s disease

    No full text
    This paper describes our preliminary results on the ADMET, synthesis, biochemical evaluation, and molecular modeling of racemic HuperTacrines (HT), new hybrids resulting from the juxtaposition of huperzine A and tacrine for the potential treatment of Alzheimer’s disease (AD). The synthesis of these HT was executed by Friedländer-type reactions of 2-amino-6-oxo-1,6-dihydropyridine-3-carbonitriles, or 7-amino-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitriles, with cyclohexanone. In the biochemical evaluation, initial and particular attention was devoted to test their toxicity on human hepatoma cells, followed by the in vitro inhibition of human cholinesterases (hAChE, and hBuChE), and the kinetics/mechanism of the inhibition of the most potent HT; simultaneous molecular modeling on the best HT provided the key binding interactions with the human cholinesterases. From these analyses, (±)-5-amino-3-methyl- 3,4,6,7,8,9-hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT1) and (±)-5-amino-3-(2,6-dichlorophenyl)-3,4,6,7,8,9- hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT3) have emerged as characterized by extremely low liver toxicity reversible mixed-type, selective hAChE and, quite selective irreversible hBuChEIs, respectively, showing also good druglike properties for AD-targeted drugs.Peer Reviewe
    corecore