101 research outputs found

    Biomolecule recognition using piezoresistive nanomechanical force probes

    Get PDF
    Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.This work has been supported by the Spanish Ministry of Science and Innovation through projects NANOSELECT-CSD2007-00041(Consolider-Ingenio 2010) and TEC2011-23600, by the European Union through the COST ACTION TD1002 and partly supported by the PRIN-MIUR Project No. 2009 WPZM4S and by AIRC (Grant IG10412.)Peer reviewe

    Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors

    Get PDF
    Validation of a technological process requires an intensive characterization of the performance of the resulting devices, circuits or systems. The technology for the fabrication of Micro and Nanoelectromechanical systems is evolving rapidly, with new kind of device concepts for applications like sensing or harvesting are being proposed and demonstrated. However, the characterization tools and methods for these new devices are still nor fully developed. Here, we present an on-wafer, highly precise and rapid characterization method to measure the mechanical, electrical and electromechanical properties of piezoresistive cantilevers. The set-up is based on a combination of probe-card and atomic force microscopy (AFM) technology, it allows accessing many devices across a wafer and it can be applied to a broad range of MEMS and NEMS. Using this set-up we have characterized the performance of multiple submicron thick piezoresistive cantilever force sensors. For the best design we have obtained a force sensitivity RF=158 uV/nN, a noise of 5.8 uV (1Hz-1kHz) and a minimum detectable force (MDF) of 37 pN with a relative standard deviation of sigma=8%. This small value of sigma, together with a high fabrication yield >95%, validates our fabrication technology. The devices are intended to be used as bio-molecular detectors for the measurement of intermolecular forces between ligand and receptor molecule pairs.This work has been supported by MICINN through projects TEC2011-23600 and NANOSELECT-CSD2007- 00041 (Consolider-Ingenio 2010 Programme).Peer reviewe

    Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology

    Get PDF
    The fabrication of pH-sensitive ISFET devices in an unmodified two-metal commercial CMOS technology (1.0 um from Atmel-ES2) is reported. The ISFET devices have a gate structure compatible with the CMOS process, with an electrically floating electrode consisting on polysilicon plus the two metals. The passivation oxynitride layer acts as the pH-sensitive material in contact with the liquid solution. The devices have shown good operating characteristics, with a 47 mV/pH response. The use of a commercial CMOS process allows the straightforward integration of signal-processing circuitry. An ISFET amplifier circuit has been integrated with the ISFET sensors.Peer reviewe

    Improvement of the quality factor of RF integrated inductors by layout optimization

    Get PDF
    A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency

    A Highly Sensitive Potentiometric Amphetamine Microsensor Based on All-Solid-State Membrane Using a New Ion-Par Complex, [3,3′-Co(1,2-closo-C2B9H11)2]− C9H13NH+

    Get PDF
    In the present work a highly sensitive ion-selective microelectrode for the detection of amphetamine is presented. For this purpose, a novel ion-par complex based on the metallocarborane, cobalt bis(dicarbollide) anion ([3,3′-Co(1,2-C2B9H11)2]−) coupled to amphetamonium cation has been prepared as the active site for amphetamine recognition. The prepared ion-par complex was incorporated to a PVC-type sensitive membrane. It was then drop-casted on the top of a gold microelectrode previously modified with a solid contact layer of polypyrrole. This novel amphetamine microsensor has provided excellent and quick response within the range 10−5 M to 10−3 M of amphetamine concentration, a limit of detection of 12 µM and a slope of 60.1 mV/decade. It was also found to be highly selective toward some potential interference compounds when compared to amphetamine.The authors acknowledge the financial support from the European Union’s Horizon 2020 research and innovation programme entitled MicroMole and HEARTEN grant agreement No. 653626 and No. 643694 respectivel

    A Sensitive Micro Conductometric Ethanol Sensor Based on an Alcohol Dehydrogenase-Gold Nanoparticle Chitosan Composite

    Get PDF
    In this paper, a microconductometric sensor has been designed, based on a chitosan composite including alcohol dehydrogenase—and its cofactor—and gold nanoparticles, and was calibrated by differential measurements in the headspace of aqueous solutions of ethanol. The role of gold nanoparticles (GNPs) was crucial in improving the analytical performance of the ethanol sensor in terms of response time, sensitivity, selectivity, and reproducibility. The response time was reduced to 10 s, compared to 21 s without GNPs. The sensitivity was 416 µS/cm (v/v%)−1 which is 11.3 times higher than without GNPs. The selectivity factor versus methanol was 8.3, three times higher than without GNPs. The relative standard deviation (RSD) obtained with the same sensor was 2%, whereas it was found to be 12% without GNPs. When the air from the operator’s mouth was analyzed just after rinsing with an antiseptic mouthwash, the ethanol content was very high (3.5 v/v%). The background level was reached only after rinsing with water

    Development of an ImmunoFET for Analysis of Tumour Necrosis Factor- (alfa) in Artificial Saliva: Application for Heart Failure Monitoring

    Get PDF
    Assessing tumour necrosis factor-(alfa) (TNF-(alfa)) levels in the human body has become an essential tool to recognize heart failure (HF). In this work, label-free, rapid, easy to use ImmunoFET based on an ion-sensitive field effect transistor (ISFET) was developed for the detection of TNF-(alfa) protein. Monoclonal anti-TNF-(alfa) antibodies (anti-TNF-(alfa) mAb) were immobilized on an ISFET gate made of silicon nitride (Si3N4) after salinization with 11-(triethoxysilyl) undecanal (TESUD). The obtained ISFET functionalized with the mAbs (ImmunoFET) was used to detect TNF-(alfa) protein in both phosphate buffer saline (PBS) and artificial saliva (AS). The change in the threshold voltage of the gate (DVT) showed approximately linear dependency on the concentration of the antigens in the range 5-20 pg/mL for both matrixes. The cross-selectivity study showed that the developed ImmunoFET demonstrated to be selective towards TNF-(alfa), when compared to other HF biomarkers such as N-terminal pro-brain natriuretic peptide (NT-proBNP), interleukin-10 (IL-10), and cortisol, even if further experiments have to be carried out for decreasing possible unspecific absorption phenomena. To the best of our knowledge, this is the first ImmunoFET that has been developed based on Si3N4 for TNF-(alfa) detection in AS by electrical measurement

    Large area in situ fabrication of Poly(pyrrole)-nanowires on flexible thermoplastic films using Nanocontact printing

    Get PDF
    Abstract: Highly efficient nano-engineering tools will certainly revolutionize the biomedical and sensing devices research and development in the years to come. Here, we present a novel high performance conducting poly(pyrrole) nanowires (PPy-NW) patterning technology on thermoplastic surfaces (poly(ethylene terephthalate (PETE), poly(ethylene 2,6-naphthalate (PEN), polyimide (PI), and cyclic olefin copolymer (COC)) using nanocontact printing and controlled chemical polymerization (nCP-CCP) technique. The technique uses a commercial compact disk (CD) as a template to produce nanopatterned polydimethylsiloxane (PDMS) stamps. The PDMS nanopatterned stamp was applied to print the PPy-NWs and the developed technology of nCP-CCP produced 3D conducting nanostructures. This new and very promising nanopatterning technology was achieved in a single step and with a low cost of fabrication over large areas

    Understanding graphic narrative through the synthesis of comic and picturebooks

    Get PDF
    This study was undertaken to develop a better understanding of comics, picturebooks, and their relationship through progressive attempts to combine them in practice. The study was motivated by an interest in hybrid forms as a site where narrative techniques from different forms are put to alternative use in a new context. The research contributes to current scholarly discussion of graphic narrative from a practitioner’s perspective. Reflective practice offers unique potential as a method for critical study. Comparative analysis of changes over time throws light on each form’s typical mechanisms for graphic storytelling, and demonstrates their function in different contexts. Problems arising in practice are catalysts for a process of dynamic, analogical theory-formation and -testing, which often challenges or supplements existing knowledge, leading to a more nuanced understanding of the forms with which practice engages. Findings evolved, firstly, from the insight that conventions for graphic storytelling function differently depending on the mode of reading and the formal context. Secondly, the degree to which the practitioner is constrained by formal limitations was found to demand a disciplined distillation of content that deliberately creates space for different kinds of readerly engagement. The study concluded that, due to their adaptation towards solitary reading, comics exert greater control over their readers, whereas picturebooks tend to be more flexible in order to accommodate different modes of reading. The way readers engage with a work impacts on the function of conventions and techniques for graphic storytelling as much as a change in formal context. Moreover, the discipline of the picturebook form demands greater economy, which can create more space for reader participation. However, neither distinct modes of reading nor differing degrees of constraint constitute grounds for definitive distinction between comics and picturebooks: instead, they offer alternative frameworks for the critical consideration of graphic narratives

    Intelligent and sustainable electronic devices and systems

    Get PDF
    Joan Bausells and Óscar Martínez Graullera (Challenge Coordinators)This section is centered on the research actions addressed to increase efficiency in computation, to achieve low energy consumption, to reduce electronic material waste and to be less harmful to the environment. In order to achieve these objectives, the projected research strategies are addressed to combine disruptive technology with ground-breaking design innovations in devices and systems.Peer reviewe
    corecore